首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prove uniqueness of numerical solutions to nonlinear parabolic equations approximated by a fully implicit interior penalty discontinuous Galerkin (IPDG) method, with a mesh-independent constraint on time step.  相似文献   

2.
Galerkin finite element method for the approximation of a nonlinear integro-differential equation associated with the penetration of a magnetic field into a substance is studied. First type initial-boundary value problem is investigated. The convergence of the finite element scheme is proved. The rate of convergence is given too. The decay of the numerical solution is compared with the analytical results.  相似文献   

3.
Single crystal viscoplasticity, with a regularization technique for the power law, is presented and implemented into a discontinuous Galerkin (DG) framework. Although single crystal plasticity has been extensively studied, its examination with the regularization method in combination with a DG formulation leads to a numerically efficient and robust model. The performance of the DG framework in crystal viscoplasticity is shown by an example. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The Bubnov-Galerkin method based on spline wavelets is used to solve singular integral equations. For the resulting systems of linear algebraic equations, the properties of their coefficient matrices are examined. Sparse approximations of these matrices are constructed by applying a cutting barrier. The results are used to numerically analyze thin wire antennas. Numerical results are presented.  相似文献   

5.
A simple factorization of the finite-dimensional Galerkin operators motivates a study of the numerical stability of a Galerkin procedure on the basis of its “potential stability” and the “conditioning” of its coordinate functions. Conditions sufficient for stability and conditions leading to instability are thereby identified. Numerical examples of stability and instability occurring in the application of the Galerkin method to boundary-integral equations arising in simple scattering problems are provided and discussed within this framework. Numerical instabilities reported by other authors are examined and explained from the same point of view. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
A systematic treatment of the three-dimensional Poisson equation via singular and hypersingular boundary integral equation techniques is investigated in the context of a Galerkin approximation. Developed to conveniently deal with domain integrals without a volume-fitted mesh, the proposed method initially converts domain integrals featuring the Newton potential and its gradient into equivalent surface integrals. Then, the resulting boundary integrals are evaluated by means of well-established cubature methods. In this transformation, weakly-singular domain integrals, defined over simply- or multiply-connected domains with Lipschitz boundaries, are rigorously converted into weakly-singular surface integrals. Combined with the semi-analytic integration approach developed for potential problems to accurately calculate singular and hypersingular Galerkin surface integrals, this technique can be employed to effectively deal with mixed boundary-value problems without the need to partition the underlying domain into volume cells. Sample problems are included to validate the proposed approach.  相似文献   

7.
A systematic treatment of the three-dimensional Poisson equation via singular and hypersingular boundary integral equation techniques is investigated in the context of a Galerkin approximation. Developed to conveniently deal with domain integrals without a volume-fitted mesh, the proposed method initially converts domain integrals featuring the Newton potential and its gradient into equivalent surface integrals. Then, the resulting boundary integrals are evaluated by means of well-established cubature methods. In this transformation, weakly-singular domain integrals, defined over simply- or multiply-connected domains with Lipschitz boundaries, are rigorously converted into weakly-singular surface integrals. Combined with the semi-analytic integration approach developed for potential problems to accurately calculate singular and hypersingular Galerkin surface integrals, this technique can be employed to effectively deal with mixed boundary-value problems without the need to partition the underlying domain into volume cells. Sample problems are included to validate the proposed approach.  相似文献   

8.
9.
Summary. A fully discrete modified finite element nonlinear Galerkin method is presented for the two-dimensional equation of Navier-Stokes type. The spatial discretization is based on two finite element spaces XH and Xh defined on a coarse grid with grid size H and a fine grid with grid size h << H, respectively; the time discretization is based on the Euler explicit scheme with respect to the nonlinear term. We analyze the stability and convergence rate of the method. Comparing with the standard finite element Galerkin method and the nonlinear Galerkin method, this method can admit a larger time step under the same convergence rate of same order. Hence this method can save a large amount of computational time. Finally, we provide some numerical tests on this method, the standard finite element Galerkin method, and the nonlinear Galerkin method, which are in a good agreement with the theoretical analysis.Mathematics Subject Classification (2000): 35Q30, 65M60, 65N30, 76D05  相似文献   

10.
In this paper, we apply the new homotopy perturbation method to solve the Volterra's model for population growth of a species in a closed system. This technique is extended to give solution for nonlinear integro‐differential equation in which the integral term represents the total metabolism accumulated fromtime zero. The approximate analytical procedure only depends on two components. The newhomotopy perturbationmethodwas applied to nonlinear integro‐differential equations directly and by converting the problem into nonlinear ordinary differential equation. We also compare this method with some other numerical results and show that the present approach is less computational and is applicable for solving nonlinear integro‐differential equations and ordinary differential equations as well. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper we present a discontinuous Galerkin method applied to incompressible nonlinear elastostatics in a total Lagrangian deformation-pressure formulation, for which a suitable interior penalty stabilization is applied. We prove that the proposed discrete formulation for the linearized problem is well-posed, asymptotically consistent and that it converges to the corresponding weak solution. The derived convergence rates are optimal and further confirmed by a set of numerical examples in two and three spatial dimensions.  相似文献   

12.
A numerical method is proposed to approximate the solution of a nonlinear and nonlocal system of integro-differential equations describing age-dependent population dynamics with spatial diffusion. We use a finite difference method along the characteristic age-time direction combined with finite elements in the spatial variable. Optimal order error estimates are derived for this approximation. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
14.
Three-dimensional thick shell elements with 8, 16, and 18 nodes are formulated by using the hybrid/mixed method. In bending applications, these elements are free from locking effect and give improved stress predictions. Finite element equations are derived from the Hellinger-Reissner variational principle in which both the displacement and stress fields are approximated by independent interpolation functions. For the assumption of stress parameters, three guidelines are followed: (i) suppression of kinematic deformation modes, (ii) invariant element property, and (iii) the constraint index exhibited by the element, when applied to constrained-media problems, must be greater than or equal to one. Numerical results are presented to show the element's behavior characteristics regarding sensitivity to locking, distortion effect (patch tests), mesh convergence and the accuracy of stress evaluation.  相似文献   

15.
In this paper, we investigate the a priori and a posteriori error estimates for the discontinuous Galerkin finite element approximation to a regularization version of the variational inequality of the second kind. We show the optimal error estimates in the DG-norm (stronger than the H1 norm) and the L2 norm, respectively. Furthermore, some residual-based a posteriori error estimators are established which provide global upper bounds and local lower bounds on the discretization error. These a posteriori analysis results can be applied to develop the adaptive DG methods.  相似文献   

16.
17.
A Discontinuous Galerkin method with interior penalties is presented for nonlinear Sobolev equations. A semi‐discrete and a family of fully‐discrete time approximate schemes are formulated. These schemes are symmetric. Hp‐version error estimates are analyzed for these schemes. For the semi‐discrete time scheme a priori L(H1) error estimate is derived and similarly, l(H1) and l2(H1) for the fully‐discrete time schemes. These results indicate that spatial rates in H1 and time truncation errors in L2 are optimal. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

18.
Materials which are heated by the passage of electricity are usually modeled by a nonlinear coupled system of two partial differential equations. The current equation is elliptic, while the temperature equation is parabolic. These equations are coupled one to another through the conductivities and the Joule effect. A computationally attractive discretization method is analyzed and shown to yield optimal error estimates in H1. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
Summary. We discuss the effect of cubature errors when using the Galerkin method for approximating the solution of Fredholm integral equations in three dimensions. The accuracy of the cubature method has to be chosen such that the error resulting from this further discretization does not increase the asymptotic discretization error. We will show that the asymptotic accuracy is not influenced provided that polynomials of a certain degree are integrated exactly by the cubature method. This is done by applying the Bramble-Hilbert Lemma to the boundary element method. Received May 24, 1995  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号