首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
采用SiO2对NaYF4∶Yb,Er油相上转换纳米晶进行包覆以实现其水溶性,通过在SiO2壳表面吸附Au纳米粒子,进一步构建了NaYF4∶Yb,Er@SiO2与Au纳米粒子能量传递的体系,该体系可实现对NaYF4∶Yb,Er上转换纳米粒子红绿光比的连续可调。该研究结果有助于实现上转换发光纳米材料在生物成像、检测和传感等方面的应用。  相似文献   

2.
陈喆  刘真育  赵丹  秦伟平 《发光学报》2011,32(9):853-857
利用水热法,制备了具有不同形貌的NaYF4:20% Yb3+,1%Tm3+上转换发光粒子.利用扫描电子显微镜、X射线衍射分析、发光光谱测量等手段对样品进行了形貌、晶相和发光性质的表征.结果表明,通过调控反应物的浓度,可以实现NaYF4基质从立方相到六角相的晶相转变.在980 nm红外光的激发下,六角相的NaYF4∶ 2...  相似文献   

3.
对NaYF4∶Yb3+,Er3+纳米材料的发光强度与激发光功率的依赖关系进行了研究,分析了NaYF4∶Yb3+,Er3+裸核纳米体系及其核包壳纳米体系的上转换红光真实来源.结果表明:核包壳的纳米体系完全不同于裸核纳米体系,交叉弛豫对于NaYF4∶ Yb3+,Er3+纳米体系的上转换红光发射起主导作用,而多声子弛豫过程几乎可以忽略.这个结果对于提高上转换发光纳米材料的上转换效率、调控各发光带之间的相对强度和实现上转换发光的单色性具有重要的指导意义.  相似文献   

4.
在基于荧光共振能量传递(FRET)的均相分析中,小尺寸的上转换发光纳米晶(UCNPs)用作供体被认为有很大的优势。通过配体交换的方式制备了大小约12nm、表面带有氨基的水溶性NaYF4∶Er3+,Yb3+UCNPs。傅里叶变换红外光谱证明配体交换成功;扫描电镜表明UCNPs的形貌和尺寸没有改变;圆二色光谱表征亲合素偶联UCNPs前后二级结构变化较小。以亲合素化的NaYF4∶Er3+,Yb3+UCNPs为供体;受体为生物素标记的藻红蛋白。通过亲合素—生物素系统拉近供体和受体,引发共振能量传递。当体系中加入自由的生物素分子,它们竞争地与UCNPs表面的亲合素结合,抑制能量传递过程,从而荧光光谱发生变化。根据这种光谱变化与加入生物素量之间的关系,对其进行定量检测,获得了纳摩尔级的检测限。  相似文献   

5.
宋凯  杜创  赵军伟  孔祥贵 《发光学报》2012,33(11):1215-1218
不理想的发光上转换纳米晶(UCNPs)表面效应成为其生物标记的主要障碍。本文合成了表面带有氨基功能基团的水溶性NaYF4∶Yb3+,Er3+UCNPs,并通过共价偶联的方式将聚乙二醇(PEG)分子修饰到其表面。光谱测试表明纳米晶的发光性质基本没有变化,扫描电镜结果说明修饰的PEG分子在一定程度上减少了纳米晶的聚集。最后,细胞毒性实验证明这种修饰后的上转换纳米晶具有良好的生物相容性。  相似文献   

6.
赵军伟  孔祥贵 《发光学报》2011,32(7):675-679
以氨基磷酸为螯合剂,通过共沉淀与水热法相结合,成功地制备出NaYF4:Yb3+,Er3+纳米晶.研究结果表明:水热前后NaYF4:Yb3+,Er3+纳米晶均为立方相结构,其颗粒大小约为80nm.在980 nm近红外光激发下,实现了样品的上转换发光.样品的上转换绿红光发射带归因于Er3+的2H11/2,4S3/2→4 I...  相似文献   

7.
采用溶剂热法合成了聚乙烯亚胺(PEI)修饰的NaYF4∶Yb3+,Tm3+纳米晶。产物具有良好的结晶性,粒径分布均匀,可稳定分散在水溶液中。通过微乳法制备了NaYF4∶Yb3+,Tm3+纳米晶负载壳聚糖微球。结果表明:纳米晶均匀地嵌在壳聚糖微球的表面壳层,球核为纯壳聚糖的交联产物。粗糙的球体表面使微球具有较好的分散性。在980 nm近红外光激发下,纳米晶负载壳聚糖微球具有良好的上转换发光特性,发光强度随纳米晶负载量的增加而增大,通过调控纳米晶的负载量可实现对纳米晶负载壳聚糖微球发光强度的调控。  相似文献   

8.
BaGd2ZnO5∶Yb3+,Er3+是目前报道的上转换效率最高的发光材料,有广泛的应用前景,但到目前为止还没有关于该基质材料中Er3+发光动力学过程研究的报道。采用溶胶凝胶法制备BaGd2ZnO5∶Yb3+,Er3+上转换发光材料,测量不同激发密度下上转换光发射功率及上转换效率。数据表明:当激发密度较低时,绿色光发射强度与激发光功率的二次方成正比;激发密度较高时,与激发光功率的一次方成正比;上转换能量效率先增大后减小,具有一个极大值。通过建立不同激发密度下,Er3+离子4 S3/2能级上转换光发射速率方程模型,阐述了产生这一现象的动力学过程和绿色光发射产生的机理。在弱激发条件下,用方波调制的971nm LD激光激发BaGd2ZnO5∶Yb3+,Er3+样品,测量上转换绿光的上升和衰减过程,用Er3+离子4 S3/2能级的速率方程拟合绿光的上升和衰减过程确定相关参数,证实Er3+离子4 S3/2能级粒子布居主要来自于Yb3+→Er3+的能量传递。  相似文献   

9.
利用温和的溶剂热方法合成了具有上转换发光性能的Yb3+-Tm3+和Yb3+-Er3+共掺的纳米NaYGdF4。在该体系中, 通过调节Gd3+在基质中的掺杂量可以有效地控制产物的相变、尺寸以及上转换荧光性能。XRD和TEM分析结果表明, Gd3+的掺入在促进NaYF4纳米颗粒由立方相到六方相转变的同时有助于减小其尺寸。上转换光谱研究表明, 在Yb3+-Tm3+和Yb3+-Er3+共掺体系中, 可通过优化Gd3+的掺杂量来有效提高产物的上转换荧光强度。同时, 通过研究Tm3+和Er3+在不同可见光波段的发光强度与泵浦功率的关系探讨了上转换发光的机制。  相似文献   

10.
赵承周  孔祥贵  宋曙光  曾庆辉 《发光学报》2013,34(10):1283-1287
利用高温热溶剂法合成了NaYF4∶20%Yb3+,2%Er3+纳米粒子,通过X射线衍射谱、扫描电镜及低温荧光光谱对其结构、形貌及发光性质进行了表征。研究结果表明:合成的纳米粒子为六角相,粒径大小约30nm。变温光谱研究表明:由于4S3/2和2H11/2能级差较小,当温度增加至45 K时,4S3/2能级和2H11/2能级的电子布局同时相应地增加;而当温度超过45 K之后,温度依赖的2H11/2能级布局随着温度的提高而增多,表现为520 nm的发光随着温度的提高一直增强。由于无辐射弛豫速率随温度升高而快速增加,导致545 nm的发光随着温度的提高先增强后减弱。  相似文献   

11.
实验研究了晶相对下转换的影响。Tb3+ -Er3+ 耦合对将一个紫外光子(Tb3+7F65L1)294 nm 剪裁成800 nm (Er3+4I9/24I15/2) 和467 nm (Tb3+5D47F6) 两个都能被GaAs 太阳能电池吸收的低能光子。采用水热法制备了NaYF4六角相微晶和立方相纳米晶粒子,六角相由于具有热力学稳定性和有序的排列结构而更有利于量子剪裁过程的发生,相反在立方相结构中没有发现量子剪裁现象。分别采用294 nm 和355 nm波长的光对六角相NaYF4进行激发,从发射光谱可以看出,下转换的实现是通过一个交叉弛豫过程完成的。实验结果表明,与熔融法相比,用水热法制备的NaYF4 的量子产率明显降低。  相似文献   

12.
采用高温溶剂热法合成了下转换发光材料NaYF4∶Eu3+ 和NaYF4∶Eu3+,Tb3+ ,采用X射线衍射(XRD)、场发射扫描电镜(FESEM)、激发(PLE)谱和光致发光(PL)谱对材料的物相结构、形貌特征和发光性质进行了表征和研究,并分析了其发光原理。结果表明:所合成的NaYF4∶Eu3+ 和NaYF4∶Eu3+,Tb3+ 为纯六方相晶体,尺寸在100 nm左右;改变Eu3+ 和Tb3+ 的掺杂浓度后晶格结构没有发生明显变化,说明Eu3+ 和Tb3+ 取代的是Y3+的晶格位置;在394 nm光的激发下,检测到Eu3+5D07F15D07F2跃迁处的特征发射光,并且可见光强度随着Eu3+ 离子掺杂浓度的变化而变化。另外Tb3+ 离子浓度对NaYF4∶Eu3+ 晶体结构产生了一定的影响,说明掺杂Tb3+ 离子改变了Eu3+ 离子所处的配位环境,导致红色发光带增强,而这主要源于电偶极子跃迁的贡献。  相似文献   

13.
以柠檬酸三钠为螯合剂,通过控制反应条件,利用水热法分别合成出立方相NaYF4:Eu3+球形纳米粒子和六角相NaYF4:Eu3+六角微米棱柱。利用X射线粉末衍射(XRD)、场扫描电子显微镜(SEM)、红外吸收(FTIR),以及发光光谱等手段对产物的物相结构、形貌和荧光性能进行了分析。结果显示产物的晶格结构和柠檬酸分子的选择性吸附是晶体形貌可控的主要原因。在395nm光激发下,NaYF4:Eu3+样品显示出较强的橙色(588nm)和红色(614nm)发光,分别来自于Eu3+离子5D0→7F1和5D0→7F2的跃迁。从5D0→7F2与5D0→7F1跃迁的强度比可以推断在立方相纳米粒子的晶格中Eu3+离子更多地占据反演中心的格位。  相似文献   

14.
钪基氟化物化学性质稳定、声子能量低、无辐射弛豫概率较低,是一种新型高效的基质材料,并且Sc3+半径较小,能与多种氨羧络合剂形成稳定的螯合物,因而具有更加奇特的物理和化学性质,近年来,成为许多科学家研究的热点。以聚乙烯二胺(PEI)作为表面活性剂,采用水热法在反应温度为200 ℃时成功制备了ScF3∶Yb3+/Er3+,NaScF4∶Yb3+/Er3+,(NH4)2NaScF6∶Yb3+/Er3+纳米上转换发光材料。通过X射线衍射仪(XRD)、透射电镜(TEM)、扫描电镜(SEM)和荧光光谱仪对所制备样品的晶相、形貌和发光特性进行了研究,结果显示:通过改变反应物NH4F和Ln3+的比例(NH4F/Ln3+=1∶1,2∶1,2.5∶1,3∶1,4∶1,6∶1,10∶1,20∶1,30∶1,40∶1,50∶1)实现了对样品产物、晶相、形貌的控制。当NH4F/Ln3+为2.5∶1时,生成了纯立方相的ScF3;在NH4F/Ln3+为4∶1时,生成了六角相的NaScF4;在NH4F/Ln3+为40∶1时,生成了一种纯立方相的新型基质材料(NH4)2NaScF6,样品结晶度高,形貌均一,有正方形片状和足球状多面体;在980 nm红外激光的激发下,不同NH4F/Ln3+比例生成的样品发光呈现桔黄→桔红→绿→黄绿等多种颜色的变化。实验表明仅改变NH4F一种原料的用量,就可以生成ScF3∶Yb3+/Er3+,NaScF4∶Yb3+/Er3+和(NH4)2NaScF6∶Yb3+/Er3+ 三种不同的产物,说明NH4F的用量对产物的生成有决定性的作用,对晶相的转换、颜色的调控亦有重要影响。  相似文献   

15.
利用水热法合成了粉末发光材NaYF4:Tb3+,Yb3+分别用X射线衍射(XRD),光致发光谱(PL)和激发谱(PLE)测试了合成材料的物相结构和发光性质.研究结果表明:合成的NaYF4:Tb3+,Yb3+抖材料为六方相的品体,无立方相的.改变Tb3+和Yb3+的掺杂浓度后品格结构没有变化,说明离子Tb3+和Yb3+取...  相似文献   

16.
研究了Er3+和Yb3+共掺杂的CaF2纳米材料的制备及其紫外上转换发光性质。在980 nm二极管激光器激发下,该材料可发出相对较强的紫外和绿色双色上转换发光。研究了敏化离子Yb3+以及发光中心离子Er3+掺杂量对该材料紫外上转换发光相对强度的影响,并进一步对该材料紫外上转换发光增强的可能机制进行了探讨。  相似文献   

17.
张烨  吴琳君  秦来顺 《发光学报》2012,33(2):150-154
采用溶胶-凝胶法合成了Y2SiO5∶Eu和Y2SiO5∶Tb纳米粉体,使用X射线衍射仪、扫描电镜等对粉体的结构、形貌和发光性能进行了分析,研究了Eu3+和Tb3+不同浓度掺杂硅酸钇纳米粉体的发光性能。在紫外光激发下,所获得的Y2SiO5∶Eu纳米粉体的主发射峰均位于612 nm,对应于Eu3+5D07F2跃迁;Y2SiO5∶Tb纳米粉体的主发射峰均位于540 nm,对应于Tb3+5D47F5跃迁。  相似文献   

18.
研究了纳米相氟氧化物玻璃陶瓷中Er3+Yb3+离子对的量子剪裁发光造成的强的光谱调制现象。测量了Er3+Yb3+双掺纳米相氟氧化物玻璃陶瓷的X射线衍射谱、表面形貌、激发光谱、吸收光谱、和发光光谱;而且也与Tb3+Yb3+双掺纳米相氟氧化物玻璃陶瓷的相对应的光谱参数进行了比较。发现378 nm光激发样品(A) Er(1%)Yb(8.0%)∶FOV和样品(B) Er(0.5%)Yb(3.0%)∶FOV所导致的652.0 nm红色发光强度为522 nm光激发时的680.85倍和303.80倍;我们还发现378 nm光激发所导致的样品(A) Er(1%)Yb(8.0%)∶FOV和样品(B) Er(0.5%)Yb(3.0%)∶FOV的 652.0 nm红色发光强度为样品(C) Er(0.5%)∶FOV 的491.05和184.12倍。我们还发现在378 nm光激发时的样品(A) Er(1%)Yb(8.0%)∶FOV和样品(B) Er(0.5%)Yb(3.0%)∶FOV的{978.0和1 012.0 nm}红外发光强度依次分别为样品(C) Er(0.5%)∶FOV 的{58.00和293.62}倍和{25.11和 67.50}倍。更进一步,对于652.0 nm波长发光的激发谱,发现(A) Er(1%)Yb(8.0%)∶FOV和(B) Er(0.5%)Yb(3.0%)∶FOV的378.5 nm激发谱峰强度是(C) Er(0.5%)∶FOV的大约606.02和199.83倍。同时,也发现样品(A) Er(1%)Yb(8.0%)∶FOV和样品(B) Er(0.5%)Yb(3.0%)∶FOV的一级量子剪裁红外1 012或978 nm发光强度为样品(D) Tb(0.7%)Yb(5.0%)∶FOV的二级量子剪裁红外976 nm发光强度的101.38和29.19倍。发现的该量子剪裁是目前所报道的最强的量子剪裁。因此,相信所发现的氟氧化物纳米玻璃陶瓷中Er3+Yb3+离子对的一级量子剪裁发光是强的可以作为量子剪裁层应用到提高晶硅太阳能电池的发电效率。研究结果也能加速对目前国际热点的下一代环保的光谱调制太阳能电池的探索。  相似文献   

19.
采用高温熔融法制备了Dy3+或Tb3+单掺和Dy3+/Tb3+共掺硅酸盐氟氧闪烁玻璃。通过对傅里叶变换红外光谱、透射光谱、光致激发和发射光谱、X射线激发发射光谱及荧光衰减曲线的分析,研究Dy3+与Tb3+之间的能量传递关系以及Dy3+对Tb3+激活硅酸盐氟氧闪烁玻璃发光性能的影响。实验结果表明:Dy3+/Tb3+共掺硅酸盐氟氧闪烁玻璃具有较高的密度和良好的可见区透过率,玻璃的网络结构是由[SiO4]四面体和[AlO4]四面体连接构成。在紫外光激发时,Dy3+单掺玻璃的发光源于Dy3+的4F9/2→6H15/2(483 nm),6H13/2(576 nm)的跃迁发射,而Tb3+单掺玻璃的发光则源于Tb3+的5D4→7F6(489 nm),7F5(544 nm),7F4(586 nm)和7F6(623 nm)的跃迁发射。对于Dy3+/Tb3+共掺玻璃,发射光谱则主要由Tb3+的荧光发射组成。通过对不同波长紫外光激发的发射光谱分析发现,Dy3+/Tb3+共掺闪烁玻璃中存在多种形式的能量传递。在以Dy3+的特征激发452 nm为激发波长时,Tb3+单掺玻璃的发光很弱。但随着Dy3+的引入,通过4F9/2(Dy3+)→5D4(Tb3+)的能量传递,Tb3+发光得到敏化增强。Dy3+/Tb3+共掺玻璃的发光强度随着Dy2O3含量的增多而增强,Dy2O3含量为1 mol%时达到最大,更高Dy2O3含量的样品由于Dy3+的浓度猝灭,减少了向Tb3+的能量传递,发光强度减弱。当激发波长减小到350 nm时,Dy3+和Tb3+均被激发到更高的能级6P7/2(Dy3+)和5L9(Tb3+),此时除了4F9/2(Dy3+)→5D4(Tb3+)的能量传递外,还出现了5D4(Tb3+)→4F9/2(Dy3+)的能量回传。Dy3+掺杂浓度较低时,Dy3+→Tb3+能量传递作用较强,Tb3+发光得到敏化增强。随着Dy2O3含量的增多,Tb3+→Dy3+能量传递作用增强。当Dy2O3含量超过0.4 mol%时,Tb3+→Dy3+能量传递强于Dy3+→Tb3+能量传递,减少了Tb3+的辐射跃迁发光,因此Dy3+/Tb3+共掺玻璃的发光强度开始减弱。由于Gd3+向Dy3+或Tb3+均可进行有效的能量传递,因此在以Gd3+的特征激发274 nm为激发光时,Dy3+/Tb3+共掺玻璃中出现了Dy3+和Tb3+对Gd3+传递能量的竞争。随着Dy2O3含量的增多,Tb3+所获得的能量不断减少,同时伴随着Tb3+→Dy3+能量回传和Dy3+之间的无辐射交叉弛豫作用,Dy3+/Tb3+共掺玻璃的发光强度不断减弱。对Dy3+/Tb3+共掺闪烁玻璃中Tb3+的5D4→7F5荧光衰减曲线分析还发现,随着Dy2O3含量的增多,Tb3+的荧光寿命从2.24 ms缩短到1.15 ms,曲线从单指数形式变为双指数形式,进一步证明玻璃中存在5D4(Tb3+)→4F9/2(Dy3+)的能量回传。X射线激发发射光谱显示,Dy3+的引入对Tb3+激活闪烁玻璃的辐射发光具有很强的负面影响,而这种负面影响不足以通过Dy3+→Tb3+能量传递来弥补,因此Dy3+/Tb3+共掺玻璃的辐射发光强度随着Dy2O3含量的增多而不断减弱。由此可见,在Tb3+激活硅酸盐氟氧闪烁玻璃中,不宜将Dy3+作为敏化剂,用于增强Tb3+的发光。  相似文献   

20.
为克服因混合不同卤化物钙钛矿量子点发生阴离子交换反应、不稳定的红光发射卤化物钙钛矿量子点等而导致在获取白光发射方面存在的不足,提出了一种可以在大气环境下合成Tb3+,Eu3+稀土离子共掺杂全无机卤化物钙钛矿量子点的方法。调节Tb3+,Eu3+稀土离子的掺杂比例,调控从钙钛矿量子点主晶格到Tb3+和Eu3+离子的能量转移,获得了单一组分、白光发射的钙钛矿量子点(Tb,Eu):CsPbCl3和(Tb,Eu):CsPb(Cl/Br)3,并对量子点的形貌、结构、发光性能及能量传递机理和稳定性进行了详细研究。研究结果表明:在365nm激光激发下,不同含量Tb3+/Eu3+离子共掺杂的钙钛矿量子点(Tb,Eu):CsPbCl3发射光谱对应的色坐标位于1931色度图中的白光区域。在进料比PbCl2∶TbCl3∶EuCl3为1∶1.5∶1时,量子产率为3.59%,比纯的CsPbCl3量子点的量子产率(0.57%)提高了6倍。进一步研究发现,该(Tb,Eu):CsPbCl3量子点在空气中储存2个月之后,量子产率几乎保持不变(3.63%),保持了良好的稳定性。此外,研究了采用不同溶剂(正辛烷、十八烯)合成Tb3+/Eu3+共掺杂钙钛矿量子点的发光特性。Tb3+/Eu3+离子共掺杂的钙钛矿量子点(Tb,Eu):CsPbCl3可实现单一组分的白光发射,有良好的稳定性,具备一定的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号