首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A quasi-two-dimensional charge transport model of AlGaN/GaN high electron mobility transistor has been developed that is capable of accurately predicting the drain current as well as small-signal parameters such as drain conductance and device transconductance. This model built up with incorporation of fully and partially occupied sub-bands in the interface quantum well, combined with a numerically self-consistent solution of the Schrödinger and Poisson equations. In addition, nonlinear polarization effects, self-heating, voltage drops in the ungated regions of the device are also taken into account. Also, to develop the model, the accurate two-dimensional electron gas mobility and the electron drift velocity have been used. The calculated model results are in very good agreement with existing experimental data for AlmGa1−mN/GaN HEMT devices with Al mole fraction within the range from 0.15 to 0.50, especially in the linear regime of IV curve.  相似文献   

2.
Rectangular Schottky drain AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate contact areas and conventional AlGaN/AlN/GaN HFETs as control were both fabricated with same size. It was found there is a significant difference between Schottky drain AlGaN/AlN/GaN HFETs and the control group both in drain series resistance and in two-dimensional electron gas (2DEG) electron mobility in the gate-drain channel. We attribute this to the different influence of Ohmic drain contacts and Schottky drain contacts on the strained AlGaN barrier layer. For conventional AlGaN/AlN/GaN HFETs, annealing drain Ohmic contacts gives rise to a strain variation in the AlGaN barrier layer between the gate contacts and the drain contacts, and results in strong polarization Coulomb field scattering in this region. In Schottky drain AlGaN/AlN/GaN HFETs, the strain in the AlGaN barrier layer is distributed more regularly.  相似文献   

3.
Although significant progress has been achieved in GaN based high power/high frequency electronic devices, surface-related problems still need an immediate solution. In particular, leakage currents through Schottky contacts not only impede device reliability but also degrade power efficiency and noise performance in such devices. This article discusses the mechanism of leakage currents through GaN Schottky and AlGaN/GaN Schottky interfaces for both forward and reverse biases. A theoretical model for the calculation of currents based on trap-assisted tunneling is discussed. In the calculation the trap energy has been assumed as a fitting parameter which is about 0.48 eV for different Al mole fractions. The comparison of the results obtained with the existing experimental data in the literature shows a good agreement.  相似文献   

4.
Using measured capacitance-voltage curves and current-voltage characteristics for the AlGaN/AlN/GaN heterostructure field-effect transistors with different gate lengths and drain-to-source distances,the influence of drain bias on the electron mobility is investigated.It is found that below the knee voltage the longitudinal optical(LO) phonon scattering and interface roughness scattering are dominant for the sample with a large ratio of gate length to drain-to-source distance(here 4/5),and the polarization Coulomb field scattering is dominant for the sample with a small ratio(here 1/5).However,the above polarization Coulomb field scattering is weakened in the sample with a small drain-to-source distance(here 20 μm) compared with the one with a large distance(here 100 μm).This is due to the induced strain in the AlGaN layer caused by the drain bias.  相似文献   

5.
Because of their large band-gap, large high-field electron velocity, large breakdownfield, and large thermal conductivity, GaN and its heterojunction with AlGaN and InGaNhave foreseeable potential in the applications of high-power/temperature electronics, andoptoelectronic devices operative in UV and visible wavelength. Polarization inducedelectric field can reach the magnitude of ~MV/cm[1,2]. For AlGaN/GaN based FETs theconcentration of sheet carrier induced by polarization in the cha…  相似文献   

6.
In this paper, we take account of the spontaneous and piezoelectric polarization effect at the heterointerface in the AlGaN/GaN HEMT device, and one-dimensional Schrödinger–Poisson equations are solved self-consistently using a nonuniform mesh; using our findings, the AlGaN/GaN heterostructure conduction band and the two-dimensional electron gas (2DEG) density are investigated. The dependences of the 2DEG characteristics on the Al fraction, the thickness of each layer, the donor concentration and the gate voltage are investigated through simulation. The output characteristics are simulated using a quasi-2D model; a saturation voltage and threshold voltage are also shown. The influence of the spacer layer width on the 2DEG density is calculated for the first time. An explanation and analyses are given.  相似文献   

7.
We present a theoretical study of electron transport properties of two-dimensional electron gas in AlGaN/GaN heterostructures. By assuming a drifted Fermi–Dirac distribution and taking into account all major scattering mechanisms, including polar optical and acoustic phonons, background impurities, dislocation and interface roughness, the momentum- and energy-balance equations derived from Boltzmann equation are solved self-consistently. The dependence of the electron drift velocity and electron temperature as a function of the applied electric field are obtained and discussed.  相似文献   

8.
Silicon-doped GaN epilayers and AlGaN/GaN heterostructures were developed by nitrogen plasma-assisted molecular beam epitaxy on high resistivity iron-doped GaN (0001) templates and their properties were investigated by atomic force microscopy, x-ray diffraction and Hall effect measurements. In the case of high electron mobility transistors heterostructures, the AlN mole fraction and the thickness of the AlGaN barrier employed were in the range of from 0.17 to 0.36 and from 7.5 to 30 nm, respectively. All structures were capped with a 2 nm GaN layer.Despite the absence of Ga droplets formation on the surface, growth of both GaN and AlGaN by RF-MBE on the GaN (0001) surfaces followed a step-flow growth mode resulting in low surface roughness and very abrupt heterointerfaces, as revealed by XRD. Reciprocal space maps around the reciprocal space point reveal that the AlGaN barriers are fully coherent with the GaN layer.GaN layers, n-doped with silicon in the range from 1015 to 1019 cm−3 exhibited state of the art electrical properties, consistent with a low unintentional background doping level and low compensation ratio. The carrier concentration versus silicon cell temperatures followed an Arhenius behaviour in the whole investigated doping range. The degenerate 2DEG, at the AlGaN/GaN heteroiterfaces, exhibited high Hall mobilities reaching 1860 cm2/V s at 300 K and 10 220 cm2/V s at 77 K for a sheet carrier density of 9.6E12 cm−2.The two dimensional degenerate electron gas concentration in the GaN capped AlGaN/GaN structures was also calculated by self-consistent solving the Schrödinger–Poisson equations. Comparison with the experimental measured values reveals a Fermi level pinning of the GaN (0001) surface at about 0.8 eV below the GaN conduction band.  相似文献   

9.
《Current Applied Physics》2015,15(11):1478-1481
The internal field of GaN/AlGaN/GaN heterostructure on Si-substrate was investigated by varying the thickness of an undoped-GaN capping layer using electroreflectance spectroscopy. The four samples investigated are AlGaN/GaN heterostructure without a GaN cap layer (reference sample) and three other samples with GaN/AlGaN/GaN heterostructures in which the different thickness of GaN cap layer (2.7 nm, 7.5 nm, and 12.4 nm) has been considered. The sheet carrier density (ns) of a two-dimensional electron gas has decreased significantly from 4.66 × 1012 cm−2 to 2.15 × 1012 cm−2 upon deposition of a GaN capping layer (12.4 nm) over the reference structure. Through the analysis of internal fields in each GaN capping and AlGaN barrier layers, it has been concluded that the undiminished surface donor states (ns) of a reference structure and the reduced ns caused by the Au gate metal are approximately 5.66 × 1012 cm−2 and 1.08 × 1012 cm−2, respectively.  相似文献   

10.
High-performance low-leakage-current AlGaN/GaN high electron mobility transistors(HEMTs) on silicon(111) substrates grown by metal organic chemical vapor deposition(MOCVD) with a novel partially Magnesium(Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally one. A 1-μm gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown AlGaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μm gate length T-shaped gate HEMTs were also investigated.  相似文献   

11.
采用原子层淀积(ALD)实现了10 nm Al2O3为栅介质的高性能AlGaN/GaN金属氧化物半导体高电子迁移率晶体管(MOS-HEMT).通过对MOS-HEMT器件和传统MES-HEMT器件室温特性的对比,验证了新型MOS-HEMT器件饱和电流和泄漏电流的优势.通过分析MOS-HEMT器件在30-180℃之间特性的变化规律,与国内报道的传统MES-HEMT器件随温度退化程度对比,得出了器件饱和电流和跨导的退化主要是由于输运特性退化造成的,证明栅介质减小了引入AlGaN界面的表面态是提高特性的重要原因.  相似文献   

12.
AlGaN/GaN/Si HEMTs grown by molecular beam epitaxy have been investigated using spectroscopy capacitance, direct and pulse current–voltage and small-signal microwave measurements. Passivation of the HEMT devices by SiO2/SiN with NH3 and N2O pretreatments is made in order to reduce the trapping effects. As has been found from DLTS data, some of electron traps are eliminated after passivation. This has led to an improvement in the drain current. To describe the electron transport, we have developed a charge-control model by including the deep traps observed from DLTS experiments. The thermal and trapping effects have been, on the other hand, studied from a comparison between direct-current and pulsed conditions. As a result, a gate-lag and a drain-lag were revealed indicating the presence of deep lying centers in the gate-drain spacing. Finally, small-signal microwave results have shown that the radio-frequency parameters of the AlGaN/GaN/Si transistors are improved by SiO2/SiN passivation and more increasingly with N2O pretreatment.  相似文献   

13.
Thermal properties of the AlGaN/GaN Schottky barrier diodes were investigated, using a pulsed-IV measurement technique. The thermally degraded mobility in the DC-bias configuration was restored, when the pulse-bias voltages were applied. It was observed that heat generation was minimized, using a pulse width of 500 ns and pulse period of 10 ms. For the SBDs consisting of 5 μm of anode–cathode distance, on-resistance measured by the pulse-IV and DC-IV were 1.6 and 6.2 Ω-mm, respectively. We also demonstrated the device-width dependence of the thermal properties of the SBDs. We found that the performance of the power devices can be greatly influenced by the heat generation.  相似文献   

14.
对含有A1N插入层纤锌矿A1xGal-xN/A1N/GaN异质结构,考虑有限厚势垒和导带弯曲的实际异质结势,同时计入自发极化和压电极化效应产生的内建电场作用,采用数值自洽求解薛定谔方程和泊松方程,获得二维电子气(2DEG)中电子的本征态和本征能级.依据介电连续模型和Loudon单轴晶体模型,用转移矩阵法分析该体系中可能存在的光学声子模及三元混晶效应.进一步,在室温下计及各种可能存在的光学声子散射,推广雷.丁平衡方程方法,讨论2DEG分布及二维电子迁移率的尺寸效应和三元混晶效应.结果显示:A1N插入层厚度和A1xGal-xN势垒层中A1组分的增加均会增强GaN层中的内建电场强度,致使2DEG的分布更靠近异质结界面,使界面光学声子强于其他类型的光学声子对电子的散射作用而成为影响电子迁移率的主导因素.适当调整A1N插入层的厚度和A1组分,可获得较高的电子迁移率.  相似文献   

15.
Al x Ga 1-x N/GaN high-electron-mobility transistor (HEMT) structures with Al composition ranging from x = 0.13 to 0.36 are grown on sapphire substrates by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). The effects of Al content on crystal quality, surface morphology, optical and electrical characteristics of the AlGaN/GaN heterostructures have been analyzed. Although high Al-content (36%) heterostructure exhibits a distinguished photoluminescence peak related to recombination between the two-dimensional electron gas and photoexcited holes (2DEG-h), its crystal quality and rough surface morphology are poor. 2DEG mobility increases with the Al content up to 26% and then it apparently decreases for high Al-content (36%) AlGaN/GaN heterostructure. The increase of sheet carrier density with the increase of Al content has been observed. A high mobility at room temperature of 2105 cm 2 /V s with a sheet carrier density of n s = 1.10 × 10 13 cm -2 , for a 26% Al-content AlGaN/GaN heterostructure has been obtained, which is approaching state-of-the-art for HEMT grown on SiC. Sheet resistance as low as 274 Ω/□ has also been achieved.  相似文献   

16.
The quality of an AlGaN channel heterojunction on a sapphire substrate is massively improved by using an AlGaN/GaN composite buffer layer. We demonstrate an Al0.4Ga0.6N/Al0.18Ga0.82N heterojunction with a state-of-the-art mobility of 815 cm2/(V·s) and a sheet resistance of 890Ω/ under room temperature. The crystalline quality and the electrical properties of the AlGaN heterojunction material are analyzed by atomic force microscopy, high-resolution X-ray diffraction, and van der Pauw Hall and capacitance–voltage(C–V) measurements. The results indicate that the improved electrical properties should derive from the reduced surface roughness and low dislocation density.  相似文献   

17.
In this paper,we present a monolithic integration of a self-protected AlGaN/GaN metal-insulator field-effect transistor(MISFET).An integrated field-controlled diode on the drain side of the AlGaN/GaN MISFET features a selfprotected function for a reverse bias.This diode takes advantage of the recessed-barrier enhancement-mode technique to realize an ultra-low voltage drop and a low turn-ON voltage.In the smart monolithic integration,this integrated diode can block a reverse bias(> 70 V/μm) and suppress the leakage current(< 5 × 10-11 A/mm).Compared with conventional monolithic integration,the numerical results show that the MISFET integrated with a field-controlled diode leads to a good performance for smart power integration.And the power loss is lower than 50% in conduction without forward current degeneration.  相似文献   

18.
Epitaxial evolution of buried cracks in a strain-controlled AlN/GaN superlattice interlayer(IL) grown on GaN template, resulting in crack-free AlGaN/GaN multiple quantum wells(MQW), was investigated. The processes of filling the buried cracks include crack formation in the IL, coalescence from both side walls of the crack, build-up of an MQW-layer hump above the cracks, lateral expansion and merging with the surrounding MQW, and two-dimensional step flow growth.It was confirmed that the filling content in the buried cracks is pure GaN, originating from the deposition of the GaN thin layer directly after the IL. Migration of Ga adatoms into the cracks plays a key role in the filling the buried cracks.  相似文献   

19.
AlGaN/GaN high-electron-mobility transistors (HEMTs) with Al-doped ZnO (AZO) transparent gate electrodes are fabricated, and Ni/Au/Ni-gated HEMTs are produced in comparison. The AZO-gated HEMTs show good DC characteristics and Schottky rectifying characteristics, and the gate electrodes achieve excellent transparencies. Compared with Ni/Au/Ni-gated HEMTs, AZO-gated HEMTs show a low saturation current, high threshold voltage, high Schottky barrier height, and low gate reverse leakage current. Due to the higher gate resistivity, AZO-gated HEMTs exhibit a current-gain cutoff frequency (fT) of 10 GHz and a power gain cutoff frequency (fmax) of 5 GHz, and lower maximum oscillation frequency than Ni/Au/Ni-gated HEMTs. Moreover, the C-V characteristics are measured and the gate interface characteristics of the AZO-gated devices are investigated by a C-V dual sweep.  相似文献   

20.
In this paper, we present the combination of drain field plate(FP) and Schottky drain to improve the reverse blocking capability, and investigate the reverse blocking enhancement of drain FP in Schottky-drain AlGaN/GaN high-electron mobility transistors(HEMTs). Drain FP and gate FP were employed in a two-dimensional simulation to improve the reverse blocking voltage(VRB) and the forward blocking voltage(VFB). The drain-FP length, the gate-FP length and the passivation layer thickness were optimized. VRBand VFBwere improved from-67 V and 134 V to-653 V and 868 V respectively after optimization. Simulation results suggest that the combination of drain FP and Schottky drain can enhance the reverse blocking capability significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号