首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
重离子治癌装置研究   总被引:1,自引:1,他引:0  
介绍了重离子治癌装置的最新发展状况 ,比较了两类典型的旋转机架的结构及光学特性 ,给出了离子光学的限制条件 .设计了一台桶形机架 ,为兰州重离子冷却储存环应用于医学治疗进行了预研. A simple plane rotating gantry is proposed at the Heavy Ion Research Facility in Lanzhou (HIRFL), where a new project named Cooling Storage Ring is under construction. The gantry is 18 metre long, 5 metre high from upper beam axes to rotation axes. It consists of eight quadruples, two 45° and one large aperture 90° dipole magnets. It is equipped with a two direction magnetic raster scanning system. A beam spot of radii between 2 to 5 mm can be achieved at∶...  相似文献   

2.
ATPF—a dedicated proton therapy facility   总被引:1,自引:0,他引:1  
A proton therapy facility based on a linac injector and a slow-cycling synchrotron is proposed. To obtain good treatments for different cancer types, both the spot scanning method and the double-scattering method are adopted in the facility, whereas the nozzles include both gantry and fixed beam types. The proton accelerator chain includes a synchrotron of 250 MeV in maximum energy, an injector of 7 MeV consisting of an RFQ and a DTL linac, with a repetition rate of 0.5 Hz. The slow extraction using the third-order resonance and together with the RFKO method is considered to be a good method to obtain a stable and more-or-less homogenous beam spill. To benefit the spot scanning 200 between 60 MeV and 230 MeV. A new method method, the extraction energy can be as many as about - the emittance balancing technique of using a solenoid or a quadrupole rotator is proposed to solve the problem of unequal emittance in the two transverse planes with a beam slowly extracted from a synchrotron. The facility has been designed to keep the potential to be upgraded to include the carbon therapy in the future.  相似文献   

3.
A proton therapy facility based on a linac injector and a slow-cycling synchrotron is proposed. To obtain good treatments for different cancer types, both the spot scanning method and the double-scattering method are adopted in the facility, whereas the nozzles include both gantry and fixed beam types. The proton accelerator chain includes a synchrotron of 250 MeV in maximum energy, an injector of 7 MeV consisting of an RFQ and a DTL linac, with a repetition rate of 0.5 Hz. The slow extraction using the third-order resonance and together with the RFKO method is considered to be a good method to obtain a stable and more-or-less homogenous beam spill. To benefit the spot scanning method, the extraction energy can be as many as about 200 between 60 MeV and 230 MeV. A new method – the emittance balancing technique of using a solenoid or a quadrupole rotator is proposed to solve the problem of unequal emittance in the two transverse planes with a beam slowly extracted from a synchrotron. The facility has been designed to keep the potential to be upgraded to include the carbon therapy in the future.  相似文献   

4.
Medical carbon-ion synchrotron is being developed at JINR on the basis of the in-house technology of Nuclotron superconducting magnets. The key element of the facility is a superconducting gantry that consists of two 67.5° and one 90° bending sections, each including two identical low-aperture (about 120 mm) dipole magnets with a magnetic field of 3.2 T. Such gantries are intended for multiple raster scanning with a wide carbon beam or for the technique of layerwise irradiation with a spread-out (several mm) Bragg peak. Simulations of the dipole magnets are the subject of this work.  相似文献   

5.
Hadron therapy with protons and carbon ions is one of the most effective branches in radiation oncology. It has advantages over therapy using gamma radiation and electron beams. Fifty thousand patients a year need such treatment in Russia. A review of the main modern trends in the development of accelerators for therapy and treatment techniques concerned with respiratory gated irradiation and scanning with the intensity modulated pencil beams is given. The main stages of formation, time structure, and the main parameters of the beams used in proton therapy, as well as the requirements for medicine accelerators, are considered. The main results of testing with the beam of the C235-V3 cyclotron for the first Russian specialized hospital proton therapy center in Dimitrovgrad are presented. The use of superconducting accelerators and gantry systems for hadron therapy is considered.  相似文献   

6.
Over the last twenty years the treatment of cancer with protons and light nuclei such as carbon ions has moved from being the preserve of research laboratories into widespread clinical use. A number of choices now exist for the creation and delivery of these particles, key amongst these being the adoption of pencil beam scanning using a rotating gantry; attention is now being given to what technologies will enable cheaper and more effective treatment in the future. In this article the physics and engineering used in these hadron therapy facilities is presented, and the research areas likely to lead to substantive improvements. The wider use of superconducting magnets is an emerging trend, whilst further ahead novel high-gradient acceleration techniques may enable much smaller treatment systems. Imaging techniques to improve the accuracy of treatment plans must also be developed hand-in-hand with future sources of particles, a notable example of which is proton computed tomography.  相似文献   

7.
Two semi‐transparent imaging beam‐position monitors developed at the ESRF have been installed at the micro‐analysis beamline ID22 for monitoring the angular stability of the X‐ray beam. This system allows low‐frequency (10 Hz) angular beam stability measurements at a submicroradian range. It is demonstrated that the incoming macro‐beam angular fluctuations are one of the major sources of focal spot instabilities downstream of the Kirkpatrick–Baez mirrors. It is also shown that scanning the energy by rotating the so‐called fixed‐exit monochromator induces some unexpected angular beam shifts that are, to a large extent, deterministic.  相似文献   

8.
李元杰  何小亮  孔艳  王绶玙  刘诚  朱健强 《物理学报》2017,66(13):134202-134202
提出了基于M?llenstedt电子双棱镜的电压扫描剪切干涉全场ptychographic iterative engine(PIE)显微成像技术.从低到高逐步改变电子双棱镜的电压,并同时记录所形成的剪切干涉条纹,待测样品透射电子束的强度和相位分布就可以用PIE算法得以快速重建,而且双棱镜的方向、位置和实际电场强度分布等诸多实验中不可避免地偏差都可以在迭代过程中自动得以更正.所提技术能够克服现阶段用电子束进行PIE成像的诸多技术困扰,从而有望推动PIE技术在电子显微成像领域的发展和应用.  相似文献   

9.
Laser beam forming has emerged as a new and very promising technique to form sheet metal by thermal residual stresses. The objective of this work is to investigate numerically the effect of rectangular beam geometries, with different transverse width to length aspect ratio, on laser bending process of thin metal sheets, which is dominated by buckling mechanism. In this paper, a comprehensive thermal and structural finite element (FE) analysis is conducted to investigate the effect that these laser beam geometries have on the process and on the final product characteristics. To achieve this, temperature distributions, deformations, plastic strains, stresses, and residual stresses produced by different beam geometries are compared. The results suggest that beam geometries play an important role in the resulting temperature distributions on the workpiece. Longer beam dimensions in the scanning direction (in relation to its lateral dimension) produce higher temperatures due to longer beam–material interaction time. This affects the bending direction and the magnitude of the bending angles. Higher temperatures produce more plastic strains and hence higher deformation. This shows that the temperature-dependent yield stress plays a more dominant role in the deformation of the plate than the spread of the beam in the transverse direction. Also, longer beams have a tendency for the scanning line to curve away from its original position to form a concave shape. This is caused by buckling which develops tensile plastic strains along both ends of the scanning path. The buckling effect produces the opposite curve profile; convex along the tranverse direction and concave along the scanning path.  相似文献   

10.
查冰婷  袁海璐  马少杰  陈光宋 《物理学报》2019,68(7):70601-070601
针对现有单光束激光同步扫描周视探测对脉冲重复频率要求较高,难以实际应用的问题,提出单光束扩束扫描激光周视探测方法.基于单光束扩束扫描激光周视探测工作原理,推导了最低扫描频率和脉冲频率解析式;分析了圆柱目标回波特性及关键参数截面衰减系数,建立了脉冲扩束激光圆柱目标回波功率数学模型,讨论了系统参数对截面衰减系数的影响,得到最大相邻脉冲光束夹角表达式;重点分析了脉冲频率、光束角和光束入射角对不同直径目标的探测能力的影响;得到了探测系统对典型条件下最大光束角、最低脉冲频率的计算方法.结果表明,对扫描光束稍加扩束可有效降低脉冲重复频率要求.研究结果可为单光束脉冲激光周视探测系统设计、优化提供理论依据.  相似文献   

11.
卫星激光通信终端光跟踪检测的数理基础   总被引:6,自引:0,他引:6  
卫星激光通信光束的传播在空间属于远场衍射,而在地面光学跟踪检验中属于近场衍射。采用菲涅耳衍射理论研究了远场衍射和近场衍射对于产生光学跟踪位置误差信号的本质上的差别并且分析了等效条件,证明了近场检验中采用卫星相对角度运动轨迹的光束扫描可以准确模拟远场相对运动,同时也得到了光斑特性和卫星抖动模拟的分析。澄清了卫星激光通信终端光学跟踪性能检验中的基本概念,具有实际指导意义。  相似文献   

12.
A two-dimensional diameter control apparatus has been devised and constructed on the laser scanning principle, which uses a reference grating to determine the outer diameter of an object as well as the position of the scanning beam.  相似文献   

13.
光学相控阵技术是一种新型光束偏转及扫描技术,介绍了光学相控阵技术光束电扫描的原理,分析了光学相控阵主要参数及高斯光束替代平行光束入射对偏转效果的影响,研究了三种利用光学相控阵实现多光束扫描的方法。研究结果表明,为了提高光束质量应尽量减小单元周期,增大光学相控阵尺寸和填充率,但减小周期并不能完全抑制栅瓣,而高斯光束取代平行光束入射仅影响偏转光束的角宽度,所研究的三种多光束扫描方法均有效,三种方法各有优缺点。  相似文献   

14.
为了提高反鱼雷鱼雷(ATT)激光近炸引信对来袭鱼雷的捕获率,首先根据鱼雷目标的激光反射特性,分析了鱼雷目标回波功率随激光束入射角度和入射位置的变化规律。采用空间解析几何方法描述了ATT与来袭鱼雷的交会模型,给出了任意交会距离和姿态时目标回波功率计算方法。根据系统最小探测功率,建立了水中单光束扫描激光引信捕获率蒙特卡罗仿真模型,仿真了系统捕获率随激光脉冲频率的变化关系,获得了探测不同距离目标的最大捕获率和相应的激光扫描频率和脉冲频率。结果表明:当激光扫描频率为15Hz,脉冲频率为4kHz,系统能可靠捕获距离9m内目标。所得系统捕获率仿真模型和结果可为ATT单光束扫描激光引信系统设计提供理论参考。  相似文献   

15.
改进后的BEPC储存环束流位置测量系统   总被引:1,自引:1,他引:0  
马力  石平  叶恺容 《中国物理 C》1998,22(5):475-480
介绍改进后的北京正负电子对撞机束流位置测量系统的软硬件结构和系统的性能.改进后系统的位置测量重复性优于10μm,测量一次闭轨的时间为11s,系统的动态范围大于81dB,最小可测束流强度低于0.5mA,测量结果的可信度是通过自洽检测来保证的.  相似文献   

16.
扫描补偿系统是3DLIF水体测量系统中实现大尺寸平面激光等光程扫描的关键部分,决定了平面激光光束在流体水槽中的定位精度;系统3 000 mm长的光程和500 mm宽的光源使定位精度难以保证。针对该问题,分析了扫描补偿系统中可能存在的误差因素和各项因素之间的影响关系,建立了相关误差模型并进行仿真分析,对得到的误差数据进行了多项式拟合,拟合结果显示,棱镜制造角差和平面反射镜绕z轴的俯仰为影响位置误差的主要因素;为了减小误差,进一步分析拟合结果,得到了两项因素之间的关系表达式,提出了以仿真结果指导装调来减小误差的方法。最终仿真结果显示,通过该方法使平面激光在水槽中的位置误差可以从0.618 mm减小到0.103 mm。  相似文献   

17.
电子束快速成型设备偏扫系统工作频率高,磁偏扫装置的铁损、涡流等损耗导致偏扫轨迹产生偏差。通过获取偏扫区域内特征点基准偏扫参数并由插补算法计算区域内任意一点偏扫参数,能够较好地抑制动态偏差;但由光学观察系统判断电子束斑点位置所获得的基准偏扫参数精确性较低。为提高偏扫轨迹精度,在现有电子束快速成型机上加装一种特征点参数采集装置,收集产生的二次反射电子,通过二次反射电子信号判断特征点通孔中心与电子束斑点中心的对中性。实验表明:当电子束斑点位于特征点中心且聚焦于上表面时,二次反射电子信号最小,此时获得的基准偏扫参数精确性高,能够提高电子束偏扫加工的精度。  相似文献   

18.
We have performed simulations to investigate the variable focusing and scanning capability of metallic nano-slit configurations. In a symmetric nanorod configuration inside an aperture with adjustable offset of the center rod, the focal position is found to be variable in the 0.5–3.5 μm range. In a ladder configuration of the rods, the transmitted beam is found to be deflected up to 23°. Horizontal displacement of rods allows for finer control of angular scanning up to 4°. Such slit geometries offer the potential to be controlled by using nano-positioning systems for applications in dynamic beam shaping and scanning on the nanoscale.  相似文献   

19.
Trapping of 10-nm-sized single fluorescent bio-molecules in solution has been achieved using high-speed position sensing and electrokinetic feedback forces in the Anti-Brownian ELectrokinetic (ABEL) trap. The high diffusion coefficient of small objects in solution requires very fast, real-time sensing of position, and this has been previously achieved using a simple rotating beam, but improved strategies are needed for the smallest objects, such as single nanometer-sized fluorescent molecules. At the same time, single molecules are limited in photon emission rate and total number of photons, so each emitted photon must be used as efficiently as possible. We describe a new controller design for the ABEL trap which features fast, knight’s tour scanning of an excitation beam on a 2D square lattice and a Kalman filter-based estimator for optimal position sensing. This strategy leads directly to a maximum-likelihood-based method to extract the diffusion coefficient of the object held in the trap. The effectiveness of the algorithms are demonstrated and compared to the simple rotating beam design through Monte Carlo simulations. Our new approach yields tighter trapping and a much improved ability to extract diffusion coefficients.  相似文献   

20.
The technique to weld AISI 304 stainless steel to AISI 420 stainless steel with a pulsed Nd:YAG laser has been investigated. The main objective of this study was to determine the influence of the laser beam position, with respect to the joint, on weld characteristics. Specimens were welded with the laser beam incident on the joint and moved 0.1 and 0.2 mm on either side of the joint. The joints were examined in an optical microscope for cracks, pores and to determine the weld geometry. The microstructure of the weld and the heat affected zones were observed in a scanning electron microscope. An energy dispersive spectrometer, coupled to the scanning electron microscope, was used to determine variations in (weight %) the main chemical elements across the fillet weld. Vickers microhardness testing and tensile testing were carried out to determine the mechanical properties of the weld. The results of the various tests and examinations enabled definition of the best position for the incident laser beam with respect to the joint, for welding together the two stainless steels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号