首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concept of using piezoelectric transducer circuitry with tunable inductance has been recently proposed to enhance the performance of frequency-shift-based damage identification method. While this approach has shown promising potential, a piezoelectric circuitry tuning methodology that can yield the optimal damage identification performance has not been synthesized. This research aims at advancing the state-of-the-art by exploring the characteristics of inductance tuning such that the enrichment of frequency measurements can be effectively realized to highlight the damage occurrence. Analysis shows that when the inductance is tuned to accomplish eigenvalue curve veering, the change of system eigenvalues induced by structural damage will vary significantly with respect to the change of inductance. Therefore, by tuning the inductance near the curve-veering range, one may obtain a family of frequency response functions that could effectively reflect the damage occurrence. When multiple tunable piezoelectric transducer circuitries are integrated to the mechanical structure, multiple eigenvalue curve veering can be simultaneously accomplished, and a series of inductance tunings can be formed by accomplishing curve veering between different pairs of system eigenvalues. It will then be shown that, to best characterize the damage occurrence, the favorable inductance tuning sequence should be selected as that leads to a “comprehensive” set of eigenvalue curve veering, i.e., all measurable natural frequencies undergo curve veering at least once. An iterative second-order perturbation-based algorithm is used to identify the locations and severities of the structural damages based on the frequency measurements before and after the damage occurrence. Numerical analyses on benchmark beam and plate structures have been carried out to examine the system performance. The effects of measurement noise on the effectiveness of the proposed damage identification method are also evaluated. It is demonstrated that the damage identification results can be significantly improved by using the variable piezoelectric transducer circuitry network with the favorable inductance-tuning scheme proposed in this research.  相似文献   

2.
This paper presents a general theory of the forced response under convected loading of mono-coupled periodic systems with a single disorder. The general expressions derived have been used to study the response of an infinite periodic beam on simple supports with one of the support spacings different from all the others. Convected harmonic pressure fields and frozen random pressure fields have been considered. Computer studies are presented showing the moment response at supports and the space-time-averaged responses in the disorder and in the nearby periodic beam elements. High response levels can occur due to (i) resonances of the beam length disorder against the stiffness of the attached periodic systems and (ii) hydrodynamic coincidence vibration occurring in the periodic beam. The frequency zones in which these high responses may occur are identified. The high response due to the resonance (ii) is restricted to the vicinity of the disorder, whereas that due to coincidence occurs throughout the system. Computed results show that the highest response levels do not necessarily occur in the beam length disorder, but may occur in one of the nearby periodic beam elements. The dependence of the maximum response levels on the magnitude of the disorder has been investigated. The conditions under which small disorders may be neglected have been pointed out.  相似文献   

3.
Vibration problems of periodic systems can be analyzed efficiently by means of the transfer matrix method. The frequency equation for the whole system is shown to be obtained in terms of the eigenvalues, or their natural logarithms, which are often called “propagation constants”, of the transfer matrix for a single periodic subsystem. In case of a mono-coupled system this frequency equation may be solved graphically by using the propagation constant curve, thereby saving a great deal of computational effort. Two types of mono-coupled systems are considered as numerical examples: a spring-mass oscillating system and a continuous Timoshenko beam resting on regularly spaced knife-edge supports. Depending on whether the transfer matrix is derived by an analytical procedure or by the finite element method, the numerical solutions become either exact or approximate.  相似文献   

4.
The problem of detecting localized large-scale internal damage in structures with imperfect bolted joints is considered. The proposed damage detection strategy utilizes the structural damping and an equivalent linearization of the bolted lap joint response to separate the combined boundary damage from localized large-scale internal damage. The frequencies are found approximately using asymptotic analysis and a perturbation technique. The proposed approach is illustrated on an example of longitudinal vibrations in a slender elastic bar with both ends clamped by bolted lap joints with different levels of damage. It is found that while the proposed method allows for the estimation of internal damage severity once the crack location is known, it gives multiple possible crack locations so that other methods (e.g., mode shapes) are required to obtain a unique crack location.  相似文献   

5.
Sonic crystals are artificial structures consisting of a periodic array of acoustic scatterers embedded in a homogeneous matrix material, with a usually large impedance mismatch between the two materials. They exhibit strong sound attenuation at selective frequency bands due to the interference of multiply reflected waves. However, sound attenuation bands in the audible range are only achieved by unfunctionally large sonic crystals. If local resonators are used instead of simple scatterers, the frequencies of the attenuation bands can be reduced by about two orders of magnitude. In the present paper we perform numerical simulations of acoustic wave propagation through sonic crystals consisting of local resonators using the local interaction simulation approach (LISA). Three strong attenuation bands are found at frequencies between 0.3 and 6.0 kHz, which do not depend on the periodicity of the crystal. The results are in good qualitative agreement with experimental data. We analyze the dependence of the resonance frequencies on the structural parameters of the local resonators in order to create a tool for design and optimization of any kind of sonic crystal.  相似文献   

6.
This paper presents an approach to identify both the location and severity evolution of damage in engineering structures directly from measured dynamic response data. A relationship between the change in structural parameters such as stiffness caused by structural damage development and the measured dynamic response data such as accelerations is proposed, on the basis of the governing equations of motion for the original and damaged structural systems. Structural damage parameters associated with time are properly chosen to reflect both the location and severity development over time of damage in a structure. Basic equations are provided to solve the chosen time-dependent damage parameters, which are constructed by using the Newmark time step integration method without requiring a modal analysis procedure. The Tikhonov regularisation method incorporating the L-curve criterion for determining the regularisation parameter is then employed to reduce the influence of measurement errors in dynamic response data and then to produce stable solutions for structural damage parameters. Results for two numerical examples with various simulated damage scenarios show that the proposed method can accurately identify the locations of structural damage and correctly assess the evolution of damage severity from information on vibration measurements with uncertainties.  相似文献   

7.
Ultrasonic guided waves that are excited by piezoelectric transducers can be used for the autonomous online identification of structural defects in thin structures. The proposed technique in this paper continuously analyzes a damage metric which is defined as the maximum residual amplitude of the differential signal. A special focus is on the decision making to discriminate the undamaged from the damaged state of the structure where the appropriate detection thresholds are derived statistically from the inverse cumulative distribution function of the damage metric during an initial training phase. An integrated trend analysis by means of the moving average mitigates the impact of statistical outliers and reduces the probability of erroneous identifications.Long-term measurements under ambient temperature variations have been conducted on an aluminum and a composite plate to study the properties of the proposed novelty detection framework. In this process the temperature effect was compensated by the well-known combination of optimal baseline selection (OBS) and baseline signal stretch (BSS). In case of the aluminum structure two artificial cracks with different sizes have been identified reliably. Consistent results were found on the composite specimen where an impact damage was identified for different excitation frequencies.  相似文献   

8.
A variety of approaches that have been developed for the identification and localisation of cracks in a rotor system, which exploit natural frequencies, require a finite element model to obtain the natural frequencies of the intact rotor as baseline data. In fact, such approaches can give erroneous results about the location and depth of a crack if an inaccurate finite element model is used to represent an uncracked model. A new approach for the identification and localisation of cracks in rotor systems, which does not require the use of the natural frequencies of an intact rotor as a baseline data, is presented in this paper. The approach, named orthogonal natural frequencies (ONFs), is based only on the natural frequencies of the non-rotating cracked rotor in the two lateral bending vibration x–z and y–z planes. The approach uses the cracked natural frequencies in the horizontal x–z plane as the reference data instead of the intact natural frequencies. Also, a roving disc is traversed along the rotor in order to enhance the dynamics of the rotor at the cracked locations. At each spatial location of the roving disc, the two ONFs of the rotor–disc system are determined from which the corresponding ONF ratio is computed. The ONF ratios are normalised by the maximum ONF ratio to obtain normalised orthogonal natural frequency curves (NONFCs). The non-rotating cracked rotor is simulated by the finite element method using the Bernoulli–Euler beam theory. The unique characteristics of the proposed approach are the sharp, notched peaks at the crack locations but rounded peaks at non-cracked locations. These features facilitate the unambiguous identification and locations of cracks in rotors. The effects of crack depth, crack location, and mass of a roving disc are investigated. The results show that the proposed method has a great potential in the identification and localisation of cracks in a non-rotating cracked rotor.  相似文献   

9.
Many structures considered for space applications are bi-periodic in their construction. Bi-periodicity means that two types of structural subassemblies, alternating in one or more directions, make up the structure. To gain insight into the dynamics of bi-periodic space structures a variety of one and two dimensional bi-periodic structures are considered. Results indicate that bands in which natural frequencies lie for periodic structures are further subdivided as a consequence of the bi-periodicity. Analytical solutions for the modes and frequencies of finite length one dimensional bi-periodic structures are obtained for general boundary conditions. A transmission method is developed to simplify the application of boundary conditions. It is found that some modes occur at frequencies which are outside the frequency bands predicted for bi-periodic structures. Two dimensional bi-periodic crossed beam grillage and truss structures are considered in this study. For cases where a separation of variables solution is possible the two dimensional structures exhibit similar properties to the one dimensional bi-periodic structures. Analytical solutions for the one and two dimensional bi-periodic structures considered above lead to a compact solution form similar to that of periodic structures analysis.  相似文献   

10.
CRACK DETECTION IN BEAM-TYPE STRUCTURES USING FREQUENCY DATA   总被引:1,自引:0,他引:1  
A practical method to non-destructively locate and estimate size of a crack by using changes in natural frequencies of a structure is presented. First, a crack detection algorithm to locate and size cracks in beam-type structures using a few natural frequencies is outlined. A crack location model and a crack size model are formulated by relating fractional changes in modal energy to changes in natural frequencies due to damage such as cracks or other geometrical changes. Next, the feasibility and practicality of the crack detection scheme are evaluated for several damage scenarios by locating and sizing cracks in test beams for which a few natural frequencies are available. By applying the approach to the test beams, it is observed that crack can be confidently located with a relatively small localization error. It is also observed that crack size can be estimated with a relatively small size error.  相似文献   

11.
Mode shapes (MSs) have been extensively used to detect structural damage. This paper presents two new non-model-based methods that use measured MSs to identify embedded horizontal cracks in beams. The proposed methods do not require any a priori information of associated undamaged beams, if the beams are geometrically smooth and made of materials that have no stiffness discontinuities. Curvatures and continuous wavelet transforms (CWTs) of differences between a measured MS of a damaged beam and that from a polynomial that fits the MS of the damaged beam are processed to yield a curvature damage index (CDI) and a CWT damage index (CWTDI), respectively, at each measurement point. It is shown that the MS from the polynomial fit can well approximate the measured MS and associated curvature MS of the undamaged beam, provided that the measured MS of the damaged beam is extended beyond boundaries of the beam and the order of the polynomial is properly chosen. The proposed CDIs of a measured MS are presented with multiple resolutions to alleviate adverse effects caused by measurement noise, and cracks can be identified by locating their tips near regions with high values of the CDIs. It is shown that the CWT of a measured MS with the n-th-order Gaussian wavelet function has a shape resembling that of the n-th-order derivative of the MS. The crack tips can also be located using the CWTs of the aforementioned MS differences with second- and third-order Gaussian wavelet functions near peaks and valleys of the resulting CWTDIs, respectively, which are presented with multiple scales. A uniform acrylonitrile butadiene styrene (ABS) cantilever beam with an embedded horizontal crack was constructed to experimentally validate the proposed methods. The elastic modulus of the ABS was determined using experimental modal analysis and model updating. Non-contact operational modal analysis using acoustic excitations and measurements by two laser vibrometers was performed to measure the natural frequencies and MSs of the ABS cantilever beam, and the results compare well with those from the finite element method. Numerical and experimental crack identification can successfully identify the crack by locating its tips.  相似文献   

12.
A new simplified approach to modelling cracks in beams undergoing transverse vibration is presented. The modelling approach uses Euler-Bernoulli beam elements with small modifications to the local flexibility in the vicinity of cracks. This crack model is then used to estimate the crack locations and sizes, by minimizing the difference between the measured and predicted natural frequencies via model updating. The uniqueness of the approach is that the simplified crack model allows the location and damage extent to be estimated directly. The simplified crack model may also be used to generate training data for pattern recognition approaches to health monitoring. The proposed method has been illustrated using the experimental data on beam examples.  相似文献   

13.
Microwave absorbing structures (MASs) reinforced by two dimensional (2D) composite lattice elements have been designed and fabricated. The density of these MASs is lower than 0.5?g/cm3. Experimental measurements show that the sandwich structure with glass fiber reinforced composite (GFRC) lattice core can serve as a broadband MAS with its reflectivity below ?10?dB over the frequency range of 4?C18?GHz. The low permittivity GFRC is indicated to be the proper material for both the structural element of the core and the transparent face sheet. Calculations by the periodic moment method (PMM) demonstrate that the 2D Kagome lattice performs better for microwave absorbing than the square one at relatively low frequencies. The volume fraction and cell size of the structural element are also revealed to be key factors for microwave absorbing performance.  相似文献   

14.
This paper is concerned with the dynamics of disordered periodic structures. The free vibration problem is considered. A method akin to the Rayleigh method is presented. This method is particularly suitable for the study of periodic structures as it exploits the nominal periodicity leading to an approximation that greatly reduces the order of the model. The method is used to calculate the natural frequencies and mode shapes for a pass-band by treating the unknown phases between the nominally identical bays as the generalized co-ordinates of the problem. An illustrative example of a cyclically coupled beam model is presented. In spite of a very large reduction in the computational effort, the results obtained are very accurate both for frequencies and mode shapes even when strong mode localization is observed. To test the performance of the proposed approximation further, a situation where two pass-bands are brought close to each other is considered (a coupled beam model having inherent bending-torsion coupling). The method presented here is general in its formulation and has the potential of being used for more complex geometries.  相似文献   

15.
《Current Applied Physics》2018,18(11):1327-1337
This paper investigates the vibration behavior of pristine and defected triangular graphene sheets; which has recently attracted the attention of researchers and compare these two types in natural frequencies and sensitivity. Here, the molecular dynamics method has been employed to establish a virtual laboratory for this purpose. After measuring the different parameters obtained by the molecular dynamics approach, these data have been analyzed by using the frequency domain decomposition (FDD) method, and the dominant frequencies and mode shapes of the system have been extracted. By analyzing the vibration behaviors of pristine triangular graphene sheets in four cases (right angle of 45-90-45 configuration, right angle of 60-90-30 configuration, equilateral triangle and isosceles triangle), it has been demonstrated that the natural frequencies of these sheets are higher than the natural frequency of a square sheet, with the same number of atoms, by a minimum of 7.6% and maximum of 26.6%. Therefore, for increasing the resonance range of sensors based on 2D materials, non-rectangular structures, and especially the triangular structure, can be considered as viable candidates. Although the pristine and defective equilateral triangular sheets have the highest values of resonance, the sensitivity of defective (45,90,45) triangular sheet is more than other configurations and then, defective (45,90,45) sheet is the worst choice for sensor applications.  相似文献   

16.
The vertical vibration of suspension bridges with a damage in the main cables is studied using a continuum formulation. Starting from a model for damaged suspended cables recently proposed in the literature, an improved expression for the dynamic increment of cable tension is derived. The nonlinear equation of motion of the damaged bridge is obtained by extending this model to include the stiffening girder. The linear undamped modal eigenproperties are then extracted, in closed-form, from the linearized equation of motion, thus generalizing to the presence of an arbitrary damage the expressions known from the literature for undamaged suspension bridges. The linear dynamics of the damaged bridge reveals to be completely described by means of the same two non-dimensional parameters that govern the linear dynamics of undamaged bridges and which account for the mechanical characteristics of both the main cable and the girder, with the addition of three non-dimensional parameters characterizing damage intensity, position and extent. After presenting the mathematical formulation, a parametric analysis is conducted with the purpose of investigating the sensitivity of natural frequencies and mode shapes to damage, which, in fact, is a crucial point concerning damage detection applications using inverse methods. All through the paper, systematic comparisons with finite element simulations are presented for the purpose of model validation.  相似文献   

17.
A novel approach to extract flame fronts, which is called the conditioned level-set method with block division (CLSB), has been developed. Based on a two-phase level-set formulation, the conditioned initialization and region-lock optimiza-tion appear to be beneficial to improve the efficiency and accuracy of the flame contour identification. The original block- division strategy enables the approach to be unsupervised by calculating local self-adaptive threshold values autonomously before binarization. The CLSB approach has been applied to deal with a large set of experimental data involving swirl- stabilized premixed combustion in diluted regimes operating at atmospheric pressures. The OH-PLIF measurements have been carried out in this framework. The resulting images are, thus, featured by lower signal-to-noise ratios (SNRs) than the ideal image; relatively complex flame structures lead to significant non-uniformity in the OH signal intensity; and, the mag- nitude of the maximum OH gradient observed along the flame front can also vary depending on flow or local stoichiometry. Compared with other conventional edge detection operators, the CLSB method demonstrates a good ability to deal with the OH-PLIF images at low SNR and with the presence of a multiple scales of both OH intensity and OH gradient. The robustness to noise sensitivity and intensity inhomogeneity has been evaluated throughout a range of experimental images of diluted flames, as well as against a circle test as Ground Truth (GT).  相似文献   

18.
In recent years, significant efforts have been devoted to developing non-destructive techniques for damage identification in structures. The work reported in this paper is part of an ongoing research on the experimental investigations of the effects of cracks and damages on the integrity of structures, with a view to detect, quantify, and determine their extents and locations. Two sets of aluminum beams were used for this experimental study. Each set consisted of seven beams, the first set had fixed ends, and the second set was simply supported. Cracks were initiated at seven different locations from one end to the other end (along the length of the beam) for each set, with crack depth ratios ranging from 0.1d to 0.7d (d is the beam depth) in steps of 0.1, at each crack location. Measurements of the acceleration frequency responses at seven different points on each beam model were taken using a dual channel frequency analyzer.The damage detection schemes used in this study depended on the measured changes in the first three natural frequencies and the corresponding amplitudes of the measured acceleration frequency response functions.  相似文献   

19.
The possibility of revealing macrodefects in periodic structures of the transmission type in white light on the basis of shift of images of the structures under investigation is shown. A simple scheme of visualization of macrodefects on the basis of obtaining shifted images of structures by using a plane mirror placed behind the periodic structure is described. A method for revealing macrodefects in periodic structures with the possibility of increasing the sensitivity of measurements is proposed. The method is based on making a photograph of a periodic structure with subsequent optical processing of this structure and its photograph, which are optically conjugate and shifted with respect to each other. An increase in the sensitivity of this method is achieved owing to separation of complex conjugate orders of diffraction of light by the structure and its photograph. The methods proposed do not require using reference periodic structures. Experimental results of testing of the methods for visualization of macrodefects in cross-shaped metal grids are presented.  相似文献   

20.
This paper proposes an innovative vibration testing method based on impulse response excited by laser ablation. In conventional vibration testing using an impulse hammer, high-frequency elements of over tens of kilohertz are barely present in the excitation force. A pulsed high-power YAG laser is used in this study for producing an ideal impulse force on a structural surface. Illuminating a point on a metal with the well-focused YAG laser, laser ablation is caused by generation of plasma on the metal. As a result, an ideal impulse excitation force generated by laser ablation is applied to the point on the structure. Therefore, it is possible to measure high-frequency FRFs due to the laser excitation. A water droplet overlay on the metal is used to adjust the force magnitude of laser excitation. An aluminum block that has nine natural frequencies below 40 kHz is employed as a test piece. The validity of the proposed method is verified by comparing the FRFs of the block obtained by the laser excitation, impulse hammer, and finite element analysis. Furthermore, the relationship between accuracy of FRF measurements and sensitivity of sensors is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号