首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A model is developed for the plastic deformation of nanocrystalline materials in terms of the evolution of a spatial grid of disclinations located at the triple junctions of grains. Plastic deformation takes place as the result of plastic rotation of grains, the mismatch of whose rotations causes the nucleation of partial disclinations at the junctions of intergrain boundaries. It is shown that the distinctive feature of the mechanical behavior of nanocrystals is a deviation from the Hall-Petch law up to a critical grain size D cr⩽25 nm. Fiz. Tverd. Tela (St. Petersburg) 39, 2023–2028 (November 1997)  相似文献   

2.
J. Y. Zhang    K. Wu  J. Sun 《哲学杂志》2013,93(9):613-637
Abstract

Due to their interface and nanoscale effects associated with structural peculiarities of nanostructured, face-centered-cubic (FCC) ultrafine-grained/nanocrystalline (UFG/NC) metals, in particular nanotwinned (NT) metals exhibit unexpected deformation behaviours fundamentally different from their coarse-grained (CG) counterparts. These internal boundaries, including grain boundaries and twin boundaries in UFG/NC metals, strongly interact with dislocations as deformation barriers to enhance the strength and strain rate sensitivity (SRS) of materials on the one hand, and play critical roles in their microstructural evolution as dislocation sources/sinks to sustain plastic deformation on the other. In this work, building on the findings of twin softening and (de)twinning-mediated grain growth/refinement in stretched free-standing NT–Ni foils, a constitutive model based on the thermally activated depinning process of dislocations residing in boundaries has been proposed to predict the steady-state grain size and simulate the plastic flow of NT–Ni, by considering the blocking effects of nanotwins on the absorption of dislocations emitted from boundaries. It is uncovered that the stress ratio (ηstress) of effective-to-internal stress can be taken as a signature to estimate the stability of microstructures during plastic deformation. This model not only reproduces well the plastic flow of the stretched NT–Ni foils as well as reported NT–Cu and the steady-state grain size, but also sheds light on the size-dependent SRS and failure of FCC UFG/NC metals. This theoretical framework offers the opportunity to tune the microstructures in the polycrystalline materials to synthesise high performance engineering materials with high strength and great ductility.  相似文献   

3.
A model is proposed for the formation of the substructure in polycrystals during plastic deformation. According to this model, fragmentation of a grain occurs through the formation of a system of diagonal low-angle boundaries, which originate at the edges of a rectangular grain. Misorientation boundaries form through relaxation of a nonsymmetric junction quadrupole disclination configuration accumulated at the grain corners under severe deformation when the disclination strength reaches a certain critical value. The energetics of this process is analyzed. A general case is considered where the disclinations at the junctions of the chosen grain differ in strength. The energetic approach used makes it possible to determine the misorientation angle ωx of the resulting boundaries corresponding to the maximum energy gain and to find the dependence of this angle on the degree of asymmetry of the quadrupole configuration of junction disclinations. According to the proposed model, the splitting of a grain with a short edge greater than 0.5 μm is energetically favorable and decreases the latent energy of the grain for any ratio between the junction disclination strengths if the grain length-to-width ratio is less than 30. It is shown that the minimum possible grain size in the proposed model does not exceed 0.1 μm.  相似文献   

4.
A theoretical model is proposed to describe the nucleation of deformation twins at grain boundaries in nanocrystalline materials under the action of an applied stress and the stress field of a dipole of junction or grain-boundary wedge disclinations. The model is used to consider pure nanocrystalline aluminum and copper with an average grain size of about 30 nm. The conditions of barrier-free twinning-dislocation nucleation are studied. These conditions are shown to be realistic for the metals under study. As the twin-plate thickness increases, one observes two stages of local hardening and an intermediate stage of local flow of a nanocrystalline metal on the scale of one nanograin. In all stages, the critical stress increases with decreasing disclination-dipole strength. The equilibrium thickness and shape of the twin plate are analyzed and found to agree well with the well-known results of experimental observations.  相似文献   

5.
A model based on the data available in the literature on the computer simulation of amorphous silicon has been proposed for describing the specific features of the plastic flow of amorphous covalent materials. The mechanism of plastic deformation involves homogeneous nucleation and growth of inclusions of a liquidlike phase under external shear stress. Such inclusions experience plastic shear, which is modeled by glide dislocation loops. The energy changes associated with the nucleation of these inclusions at room and increased temperatures have been calculated. The critical stress has been found, at which the barrierless nucleation of inclusions becomes possible. It has been shown that this stress decreases with an increase in temperature. According to the calculations, the heterogeneous (homogeneous) plastic flow of an amorphous material should be expected at relatively low (high) temperatures. Above the critical stress, the homogeneous flow is gradually replaced by the heterogeneous flow.  相似文献   

6.
Injected carriers from the contacts to delocalized bulk states of the oxide matrix via Fowler–Nordheim tunneling can give rise to quantum-confined impact ionization (QCII) of the nanocrystal (NC) valence electrons. This process is responsible for the creation of confined excitons in NCs, which is a key luminescence mechanism. For a realistic modeling of QCII in Si NCs, a number of tools are combined: ensemble Monte Carlo (EMC) charge transport, ab initio modeling for oxide matrix, pseudopotential NC electronic states together with the closed-form analytical expression for the Coulomb matrix element of the QCII. To characterize the transport properties of the embedding amorphous SiO2, ab initio band structure and density of states of the α-quartz phase of SiO2 are employed. The confined states of the Si NC are obtained by solving the atomistic pseudopotential Hamiltonian. With these ingredients, realistic modeling of the QCII process involving a SiO2 bulk state hot carrier and the NC valence electrons is provided.  相似文献   

7.
A theoretical model is proposed to describe the emission of partial dislocations by grain boundaries in nanocrystalline materials during plastic deformation. Partial dislocations are assumed to be emitted during the motion of grain-boundary disclinations, which are carriers of rotational plastic deformation. The ranges of the parameters of a defect structure in which the emission of partial dislocations by grain boundaries in nanocrystalline metals are energetically favorable are calculated. It is shown that, as the size of a grain decreases, the emission of partial dislocations by its boundary becomes more favorable as compared to the emission of perfect lattice dislocations.  相似文献   

8.
The conditions of separation of an amorphous nanofilm from a crystalline substrate are theoretically studied in terms of a disclination-dislocation model for a crystal-glass interface. In this model, such an interface is characterized by a high density of disclinations and dislocations. A criterion for the separation of an amorphous nanofilm from a crystalline substrate is obtained. The critical nanofilm thickness above which a film begins to separate is calculated as a function of the characteristics of the disclination-dislocation system and the dilatation misfit.  相似文献   

9.
We present coupled classical and quantum simulations of 1 to 2 nm Si nanocrystals (NCs) embedded in amorphous SiO(2) and we show that by tuning the density of the oxide matrix one may change the relative alignment of Si NC and SiO(2) electronic states at the interface. We find that interfacial strain plays a key role in determining the variation of the nanaoparticle gap as a function of size, as well as of conduction band offsets with the oxide. In particular, our results show that it is the variation of the valence band offset with size that is responsible for the gap change. Our findings suggest that the elastic properties of the embedding matrix may be tuned to tailor the energy levels of small Si NCs so as to optimize their performance in optoelectronic devices and solar cells.  相似文献   

10.
D. V. Bachurin 《哲学杂志》2013,93(23):2653-2667
The kinetics of relaxation of disclination quadrupoles formed within triple junctions of grains during plastic deformation are studied. The calculations are made using the discrete dislocation model for disclinations by simulating the climb of dislocations. Exponential relationships are obtained for the relaxation of the strength and elastic energy of disclination quadrupoles with a characteristic time proportional to the cube of grain size. The distribution of vacancy fluxes along grain boundaries (GBs) during the relaxation of a disclination quadrupole is studied in detail. The relation between continuum and discrete dislocation approaches to a study of the GB recovery process is considered. Characteristics of each relaxation stage are studied. A hierarchy of characteristic relaxation times for dimerent grain size ranges is constructed and it is show that in nanocrystalline materials the spreading time of trapped lattice dislocations can depend on the grain size.  相似文献   

11.
A model of the initial stage of plastic deformation in nanomaterials is proposed. Within this model, the plastic deformation occurs through grain boundary microsliding (GBM). The accommodation processes accompanying the formation of GBM regions are considered. The relationships describing the regularities in the deformation behavior of nanomaterials and the dependence of the flow stress on the grain size are derived, and the temperature dependence of the GBM resistance stress is calculated. It is demonstrated that the results obtained are in good agreement with the experimental data.  相似文献   

12.
A series of molecular dynamics simulations has been carried out to study the mechanical properties of nanocrystalline platinum. The effects of average grain size and temperature on mechanical behaviors are discussed. The simulated uniaxial tensile results indicate the presence of a critical average grain size about 14.1 nm, for which there is an inversion of the conventional Hall-Petch relation at temperature of 300 K. The transition can be explained by a change of dominant deformation mechanism from dislocation motion for average grain size above 14.1 nm to grain boundary sliding for smaller grain size. The Young's modulus shows a linear relationship with the reciprocal of grain size, and the modulus of the grain boundary is about 42% of that of the grain core at 300 K. The parameters of mechanical properties, including Young's modulus, ultimate strength, yield stress and flow stress, decrease with the increase of temperature. It is noteworthy that the critical average grain size for the inversion of the Hall-Petch relation is sensitive to temperature and the Young's modulus has an approximate linear relation with the temperature. The results will accelerate its functional applications of nanocrystalline materials.  相似文献   

13.
Purification is a separated post-treatment step after the synthesis of nanocrystals (NCs) in order to exclude excess ligands and monomers in NC solution. The common purification process involves many manipulations, such as concentrating, addition of anti-solvents and centrifugation, which are troublesome and time consuming. In this work, we originally integrate NC synthesis and NC purification in one-pot via selecting water-ethanol co-environment for NC synthesis and NC purification. Our research shows that NCs can grow in water-ethanol mixture. When growing into critical size, NCs will automatically precipitate from the solution. Element analysis demonstrates that precipitates fraction fits well with stoichiometric of ligand-capped NCs. Excess monomers are left in supernatant, and thus achieving automatically purification of NCs in the water-ethanol co-environment. By adjusting the volume ratios of water and ethanol in bi-solvent system, different-sized purified NCs can be controlled. Besides, this water-ethanol co-environment can be used in both thermal-promoted and hydrazine-promoted growth.  相似文献   

14.
We investigate the photoconductivity of a n+-ZnO/n-Ge NCs/p+-GaAs junction where the active layer consists of heavily n-doped Ge NCs synthesized in the gas phase. Measurement of a significant current at energies smaller than the band gap of GaAs demonstrates the photogeneration of charge carriers by the Ge NCs. From the correlation of the NC size with the absorption threshold, a narrowing of the direct band gap in the Ge NC thin film is obtained and attributed to the heavy doping of the Ge NCs. A remarkably high electrical activation of ~15% is found for the incorporated P impurities in the NCs.  相似文献   

15.
The grain size distributions and related mechanisms in nanocomposite films with nanostructures comprising a nanocrystalline (nc) phase surrounded by an amorphous (a) matrix under different amorphous phase amounts (V a) have been analyzed by using a Monte Carlo grain growth model. The results show that with the V a value increasing to a critical value of ~28%, the grain size distribution approaches lognormality, and it becomes off-lognormal when the V a value is larger or smaller than ~28%. The simulated results are in a good agreement with the experiment. It is shown that the homogenous or inhomogeneous grain growth mode, determined by the energy exerted on the grain boundary, originates in lognormal or off-lognormal grain size distributions in nanocomposite films. Also, in a system with lognormal grain size distribution, the amorphous phase just covers all grain boundaries (GBs) and the length obtained by summing the boundary circumference of all nanograins is the longest. It is expected that this microstructure can result in exceptional properties of nanocomposite films.  相似文献   

16.
We have investigated the synthesis of nanostructures, as well as the control of their size and location by means of ion beams. The phase separation and interface kinetics under ion irradiation give new possibilities for controlling the growth of nanostructures. Additionally, the chemical decomposition of the host matrix by collisional mixing can contribute to the self-organization of nanostructures, especially at interfaces. It is shown how collisional mixing during ion implantation affects nanocrystal (NC) synthesis and how ion irradiation through NCs modifies their size and size distribution. An analytical expression for solute concentration around an ion-irradiated NC was found, which may be written like the well-known Gibbs–Thomson relation. However, parameters have modified meanings, which has a significant impact on the evolution of NC ensembles. “Inverse Ostwald ripening” of NCs, resulting in an unimodal NC size distribution, is predicted, which has been confirmed experimentally for Au NCs in SiO2 and by kinetic lattice Monte Carlo simulations. At interfaces, the same ion-irradiation-induced mechanism may result in self-organization of NCs into a thin δ-layer. Collisional decomposition of SiO2 may enhance the NC δ-layer formation in SiO2 at the Si/SiO2 interface. The distance of the self-organized NC δ-layer from the SiO2/Si interface renders the structure interesting for non-volatile memory applications. Received: 11 November 2002 / Accepted: 12 November 2002 / Published online: 4 April 2003 RID="*" ID="*"Corresponding author. Fax: +49-351-260-3285, E-mail: K.-H.Heinig@fz-rossendorf.de  相似文献   

17.
A Hall–Petch (H–P)-type dependence is demonstrated for reciprocal activation volume measurements for nanocrystalline and conventional grain size, strengthened Ni and Cu materials, consistent with predictions derived from the dislocation pile-up model. The observed H–P dependence indicates that the shear stress for cross-slip must be involved in the full grain size regime for transmission of plastic flow at the grain boundaries of fcc metals.  相似文献   

18.
孙保安  王利峰  邵建华 《物理学报》2017,66(17):178103-178103
非晶材料是由液体快冷冻结而成的结构无序的亚稳态固体.在受力条件下,非晶材料表现出独特和复杂的流变行为,具有跨尺度的高度时空不均匀特征,并在一定条件下表现出自组织临界行为,和自然界以及物理系统中许多复杂体系的动力学行为相似.本文结合作者近年来在非晶合金流变行为方面的研究结果,对非晶材料流变的研究进展和物理机制的认识进行介绍,包括非晶材料流变的跨尺度特征、表征和微观结构机制,以及近年来发现的非晶力学流变的自组织临界行为、物理机制等.最后,对非晶材料流变行为研究中亟需解决的问题进行了总结和展望.  相似文献   

19.
We propose a physical model of formation of broken dislocation boundaries (partial disclinations of deformation origin) at the joints of large-angle grain boundaries. The model explains why and how rotational-type defects are necessarily formed in polycrystals in which plastic deformation at the microscopic level occurs exclusively via translational slips for strains ε > 0.2.  相似文献   

20.
赵宇龙  陈铮  龙建  杨涛 《物理学报》2013,62(11):118102-118102
采用晶体相场模型模拟获得了平均晶粒尺寸从11.61–31.32 nm的纳米晶组织, 研究了单向拉伸过程纳米晶组织的强化规律的微观变形机理. 模拟结果表明: 晶粒转动、晶界迁移等晶间变形行为是纳米晶材料的主要微观变形方式, 纳米晶尺寸减小, 有利于晶粒转动, 使屈服强度降低, 显示出反霍尔-佩奇效应.当纳米晶较小时, 变形量超过屈服点达到4%, 位错运动开启, 其对变形的直接贡献有限, 主要通过改变晶界结构而影响变形行为, 位错运动破坏三叉晶界, 引发晶界弯曲, 促进晶界迁移. 随纳米晶增大, 晶粒转动困难, 出现晶界锯齿化并发射位错的现象. 关键词: 晶体相场 纳米晶 反霍尔-佩奇效应 微观变形  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号