首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
往复运动齿轮齿条的润滑失效通常发生在换向死点位置附近,因此研究齿轮齿条换向点位置和换向持续时间对换向过程中润滑油膜的影响具有重要的实际意义。根据齿轮齿条换向瞬间的运动几何关系,建立了换向过程齿轮齿条弹流润滑的瞬态数值模型。采用Ree-Eyring润滑流体,应用多重网格法和多重网格积分法等数值方法,计算得到了齿轮齿条往复运动过程中换向点位置附近一对啮合轮齿间的压力、膜厚和温度,并与前人的实验结果进行了对比验证。分析了不同换向持续时间和换向点位置对一对啮合轮齿间压力、膜厚和温度的影响。齿轮齿条换向过程中油膜厚度明显降低,缩短换向持续时间虽然可以增大齿轮齿条的润滑膜厚,但会导致瞬间油温升高,因此换向持续时间存在最优值。通过比较不同换向死点位置的膜厚发现,当换向死点在单齿啮合后的双齿啮合区时,啮合轮齿间具有较理想的润滑膜厚。无论换向持续时间长短,润滑膜厚的最小值都在换向死点位置,换向死点位置是往复运动齿轮齿条润滑失效的危险点。研究结果为往复运动齿轮齿条的润滑设计提供了理论依据。  相似文献   

2.
渐开线斜齿轮非稳态弹流润滑数值模拟研究   总被引:13,自引:10,他引:3  
建立了渐开线斜齿轮啮合的弹流润滑计算模型,将斜齿圆柱齿轮啮合的齿面接触等效为有限长线接触的弹流润滑问题.考虑斜齿轮啮合的实际因素,将斜齿轮啮合过程中的等效曲率半径和齿面载荷的变化反映到弹流润滑计算模型中,应用统一Reynolds方程方法求得轮齿在1个完整啮合周期内的瞬时弹流润滑数值解.结果表明:斜齿轮啮合线上各点处的膜厚、压力均有较大不同,各接触点处的油膜厚度受综合曲率半径的影响较大;斜齿轮传动非稳态效应相对较弱;小齿轮齿根附近和节点位置处润滑状态较差;适当增大压力角可以改善齿轮的润滑.  相似文献   

3.
啮入冲击对直齿轮弹流润滑的影响   总被引:1,自引:1,他引:0  
考虑齿轮啮入冲击载荷,曲率半径、卷吸速度沿啮合线随时间的变化以及温度场的影响,用非牛顿流体的Ree-Erying润滑模型,利用多重网格法模拟了轮齿从啮入到啮出整个时间历程中油膜压力、膜厚和温度分布的变化,对比分析了啮入冲击载荷与平稳载荷对渐开线直齿轮时变非牛顿热弹流润滑结果的影响.数值结果表明,啮入冲击载荷只对啮入初始阶段的油膜压力、膜厚、温度有很大影响,最小膜厚和最大压力都发生在冲击载荷的最大峰值载荷时刻,所以齿轮的啮入冲击对齿轮保持良好的润滑状态是不利的.  相似文献   

4.
考虑摩擦动力学特性的渐开线齿轮润滑分析   总被引:2,自引:2,他引:0  
以渐开线齿轮为研究对象,综合考虑齿面摩擦、油膜刚度和阻尼的影响,将摩擦动力学特性和齿面形貌考虑到有限长线接触弹流润滑理论(EHL)中,采用多重网格数值求解法获得了渐开线齿轮在不同啮合位置处的动载荷分布,压力与膜厚分布,并对比分析了干摩擦与润滑条件下压力分布的不同特征以及动载荷对油膜分布的影响.计算结果表明:低速时,动载荷接近稳态分布,在单双齿交替点有明显的高频冲击,随着转速的增加,动载荷变化趋于平缓;与干摩擦相比,润滑油膜可以减小最大压力峰值以及入口区和出口区的压力,但对粗糙峰凹谷处压力有所增加.沿啮合线方向,压力在节点位置附近达到最大值,膜厚受动载荷的影响较小,近似呈线性增加趋势.  相似文献   

5.
基于MEPE和EHL理论的渐开线斜齿轮啮合特性分析   总被引:4,自引:2,他引:2  
以斜齿轮为研究对象,应用最小弹性势能原理(MEPE)和弹性流体动力润滑理论(EHL),采用多重网格数值求解法获得了斜齿轮在不同啮合位置及沿接触线方向的载荷分布,压力与膜厚分布,并对比分析了不同螺旋角下基于MEPE理论和基于接触线长比例理论的载荷分布模型及数值仿真结果.结果表明:沿啮合线方向,载荷在啮合中间段达到最大值,螺旋角越大,载荷分布趋于平均;受综合曲率半径和载荷分布的影响,压力分布在啮合中间段较高,膜厚沿啮合线缓慢变化,节点处稍有下降;沿接触线方向,载荷变化平缓,近似呈抛物线,最小膜厚单向线性变化,而压力则在两端具有较大值.  相似文献   

6.
建立了含有固体颗粒的弹流数学模型,修正了Reynolds方程,考虑了连续波状粗糙度的影响,对跑合过程中直齿轮轮齿啮合区的弹流润滑进行了数值解算,分析了固体颗粒和粗糙度对压力、膜厚和温度的影响。结果表明,连续波状粗糙度会引起压力和膜厚一定幅度的上下波动,考虑固体颗粒后,压力变大,膜厚减小;颗粒速度越大,膜厚越小,最小膜厚减小,最大温升一定幅度减小,颗粒所在区域的温升减小;粗糙度波长较小时,粗糙度对膜厚较小的接触区引起的温升较大。  相似文献   

7.
建立了含有固体颗粒的弹流数学模型,修正了Reynolds方程,考虑了连续波状粗糙度的影响,对跑合过程中直齿轮轮齿啮合区的弹流润滑进行了数值解算,分析了固体颗粒和粗糙度对压力、膜厚和温度的影响。结果表明,连续波状粗糙度会引起压力和膜厚一定幅度的上下波动,考虑固体颗粒后,压力变大,膜厚减小;颗粒速度越大,膜厚越小,最小膜厚减小,最大温升一定幅度减小,颗粒所在区域的温升减小;粗糙度波长较小时,粗糙度对膜厚较小的接触区引起的温升较大。  相似文献   

8.
齿向修形对滤波减速器润滑性能的影响分析   总被引:3,自引:2,他引:1  
综合考虑了滤波减速器齿向修形参数、真实齿面粗糙度和瞬态效应等因素,建立了轮齿混合润滑数学模型,数值计算了不同修形参数值对应不同啮合点的最大压力和中心膜厚,分析了齿面粗糙度和转速对润滑性能的影响.结果表明:修形参数r和Ry均存在一个优化范围,使得轮齿表面最大油膜压力显著降低,边缘效应弱化,而中心膜厚则随着r和Ry的增大而逐渐增大;未修形轮齿边缘油膜压力受粗糙度的影响而急剧增大,边缘效应更加显著,修形后轮齿的边缘效应得到了明显改善,因此,轮齿修形也因粗糙表面的存在而显得更加重要;随着转速逐渐降低,轮齿表面的平均油膜厚度逐渐变小,接触比逐渐增大,轮齿表面由弹流润滑逐渐转为混合润滑,最后演变为边界润滑.  相似文献   

9.
区别于基于半空间理论的传统直齿轮弹流润滑模型,本文基于有限长空间解建立考虑轮齿自由端面影响的渐开线直齿轮有限长弹流润滑模型. 采用叠加法构造自由端面,矩阵法和半解析法求解自由端面的影响,快速傅里叶变换算法加速齿面弹性变形计算;采用统一Reynolds方程法求解油膜压力和油膜厚度. 以啮合节点为特征位置,分析比较不同压力角下自由端面对直齿轮弹流润滑的影响. 结果表明:与半空间模型比较,考虑自由端面后端面峰值压力降低,压力分布更均匀,最小油膜厚度增大;增大轮齿压力角,节点压力水平减小,油膜厚度增大;当压力角不同时,自由端面对齿轮弹流润滑压力峰值的影响基本相当,对最小膜厚的影响较大.   相似文献   

10.
渐开线齿轮传动非牛顿润滑介质的线弹流数值分析研究   总被引:2,自引:0,他引:2  
采用适合各种流变模型的广义Reynolds方程,通过数值联立求解非牛顿介质的线弹流润滑基本方程组,获得了渐开线齿轮啮合过程的油膜压力、膜厚、表面剪应力分布,并分析了啮合过程中非牛顿效应对齿轮传动最小油膜厚度的影响。在数值计算方向引入延拓方法,使表面煎应力迭代具有大范围收敛性。  相似文献   

11.
斜齿轮弹流润滑下的接触疲劳寿命计算   总被引:6,自引:6,他引:0  
经典齿轮接触疲劳强度理论是基于光滑表面赫兹干接触理论,而实际齿面具有粗糙度,且啮合轮齿多数处于混合润滑状态.本文基于齿轮润滑接触分析建立了渐开线斜齿轮的接触疲劳寿命计算模型.模型由齿轮润滑接触分析模型和基于次表面应力分布的疲劳寿命模型组成.首先将斜齿圆柱齿轮一对齿的瞬时啮合等效为两反向圆锥的接触问题,建立了齿轮的有限长弹流润滑计算模型,考虑了齿轮啮合周期内瞬时载荷、接触线长、卷吸速度等因素的影响,基于统一雷诺方程方法求得啮合齿对间的润滑压力和油膜厚度分布;在此基础上,计算轮齿接触区次表面的米歇斯应力分布,根据Zaretsky接触疲劳寿命计算模型,对齿轮组的接触疲劳寿命进行模拟预测.针对不同工况参数下接触疲劳寿命计算表明:润滑油黏度、轮齿表面粗糙度等因素对齿面接触疲劳寿命均有显著的影响.  相似文献   

12.
戴翎  蒲伟  田兴  王家序  肖科 《摩擦学学报》2018,38(2):121-128
少齿差行星齿轮为避免齿顶干涉,通常会减小齿高,这可能会导致齿面实际接触宽度小于理论赫兹接触宽度,降低齿面接触强度.鉴于此,为研究少齿差行星传动短齿制对齿轮接触疲劳的影响,综合考虑了轮齿接触宽度、楔形间隙、齿宽有限长和齿面粗糙度等因素,建立少齿差行星齿轮短齿啮合的混合润滑统一方程,求解出啮合齿对间的压力分布、摩擦系数和轮齿接触区次表面应力分布,根据Zaretsky接触疲劳寿命计算模型,对不同工况下不同啮合位置的轮齿接触疲劳寿命进行预测.结果表明:接触宽度在少齿差行星齿轮的疲劳寿命预测中不容忽视,短齿啮合模型下的楔形间隙对啮入和啮出过程的疲劳寿命有不同影响.  相似文献   

13.
为了解决直齿面齿轮滑动摩擦啮合效率的问题,基于弹性流体动力润滑理论,提出了一种计算直齿面齿轮啮合效率的方法.首先,运用轮齿接触分析(TCA)和轮齿承载接触分析技术(LTCA)对直齿面齿轮承载啮合过程进行数值仿真;其次,运用非牛顿准稳态热弹流理论建立滑动摩擦系数的计算模型,从而建立直齿面齿轮啮合效率的计算模型,最后分析了输入扭矩、转速等对啮合效率的影响.结果表明:滑动摩擦系数是影响齿轮啮合效率的重要因素;齿面不同位置滑动摩擦系数也不相同;滑动摩擦系数受输入转速、输入扭矩的影响.该方法为直齿面齿轮的进一步优化计算提供一定的理论依据.  相似文献   

14.
为探究动载荷作用下变位齿轮系统的热弹流润滑特性,综合考虑齿轮变位和时变啮合刚度的影响,基于动力学理论,建立了齿轮的六自由度摩擦动力学模型,分析振动与静载荷作用下变位齿轮系统的热弹流润滑特性. 研究表明:与其他传动类型相比,正传动齿轮系统的润滑效果最佳,轮齿间可以形成较厚的润滑油膜,轮齿间的摩擦系数、油膜的最高温升最小,并且,随着两齿轮变位系数和的增大,润滑状况不断得到改善,热胶合承载能力增强;变位系数增加使齿轮系统的刚度增大,但同时降低了油膜的刚度.   相似文献   

15.
联合采用表面失效分析和有限元应力分析的方法,研究了渐开线直齿圆柱齿轮接触疲劳失效的成因.结果表明:由啮入线至第一次双对轮齿啮合结束部分齿面上密集的表面点蚀与该段啮合齿面相对滑移大,所消耗的摩擦功最大,摩擦应力大于第二次双齿啮合部分,而且最大剪应力更靠近齿面等因素有关.靠近节线的齿根齿面上的片状大块剥落属次表面点蚀,是由于该部位的次表面剪应力最大,位置最深,并且承受了前一对轮齿脱离啮合带来的冲击作用.紧邻啮入线附近齿面的较浅的剥落点蚀是由于承受啮入冲击,最大剪应力较大且出现位置较浅,齿面相对滑移最大所造成的,并与该处的表面点蚀坑有关.  相似文献   

16.
齿轮的非稳态弹流润滑问题由于啮合过程中滑滚比、曲率半径、卷吸速度和载荷变化范围较大,因此数值计算稳定性很差。而考虑热效应的齿轮非稳态弹流润滑问题,数值计算就更困难。本文应用多重网格技术,求得了齿轮牛顿流体润滑情况下,非稳态热弹流润滑问题的完全数值解。  相似文献   

17.
椭圆接触弹性流体动力润滑的供油条件分析   总被引:5,自引:1,他引:4  
通过数值求解研究了椭圆接触弹流润滑的供油条件,分析了供油油膜厚度对乏油润滑中心膜厚和最小膜厚的影响,以及中心膜厚和最小膜厚与润滑油膜压力区形成位置的关系.结果表明:当供油油膜厚度较小时,中心膜厚和最小膜厚很小,压力区形成位置距Hertz接触区很近,处于严重乏油状态;当供油油膜的厚度达到一定数值时,中心膜厚和最小膜厚基本不变,多余的润滑油几乎不能进入接触间隙,即达到准充分供油状态;当供油油膜厚度继续增加时,乏油区最终消失,达到充分供油或过量供油状态.  相似文献   

18.
本文中基于弹流润滑分析和次表面应力建立了渐开线直齿轮多轴疲劳寿命计算模型.相对于传统的单轴疲劳模型,考虑了齿轮固定点的应力历史和材料属性对疲劳寿命的影响,并可以得到齿轮在完整啮合过程中的寿命分布.首先建立齿轮的有限长弹流计算模型,得到齿轮啮合过程中的油膜压力和油膜厚度,再根据油膜压力计算出次表面的应力分布;通过分析齿轮计算区域随啮合过程移动的关系,得到固定点的应力历史,再根据基于应力历史的多轴疲劳寿命模型对齿轮的完整啮合过程进行寿命预估.计算分析了不同粗糙度幅值对轮齿各点寿命大小和分布的影响.研究表明:齿面粗糙度对疲劳寿命的影响显著,随着粗糙度幅值的增大,表层下最大应力向齿面移动,导致低疲劳寿命区向齿面发展且逐步扩展到整个单齿啮合区;而表面粗糙度降低到一定程度则对疲劳寿命的影响变得不明显.  相似文献   

19.
固液两相流体对直齿轮跑合热弹流润滑的影响   总被引:1,自引:0,他引:1  
建立了含有固体颗粒的接触区弹流模型,修正了Reynolds方程,考虑了润滑油对颗粒拖曳力的影响,考虑了颗粒速度随颗粒运动位置的变化,还考虑了颗粒自旋和热效应的影响,分析了颗粒运动位置变化和自旋对压力、膜厚和温度的影响,最后对算例结果进行了比较验证.结果表明:颗粒速度随颗粒运动位置变化而变化,在接触区中心附近颗粒速度趋于稳定;颗粒位于接触区中心附近时,接触区最大温度升高明显,颗粒所在区域瞬态温升较大;当颗粒靠近两啮合轮齿表面时,最小膜厚和最大温度均有所减小;颗粒顺时针自旋对最小膜厚和最大温度影响显著,顺时针自旋和逆时针自旋对接触区瞬态温升均影响较大,颗粒所在区域温度升高明显;自旋角速度增大,最小膜厚减小,最大温度升高,颗粒所在区域瞬态温升增大.  相似文献   

20.
大部分工程实际粗糙表面符合非高斯分布,并对齿轮接触副润滑特性有重要影响.将渐开线齿轮啮合过程中齿面接触等效为三维无限长线接触,建立了一个可分析直齿轮和斜齿轮的混合弹流润滑计算模型;采用基于快速傅里叶变换的数值仿真方法生成给定参数的非高斯粗糙表面;运用该模型对直齿轮和斜齿轮啮合过程进行分析,求得不同表面粗糙度特征齿轮在各个啮合点的油膜厚度、接触区载荷以及接触区比例的情况.结果表明:对于标准差相等的非高斯粗糙表面,偏度值对齿轮润滑状况的影响与工况紧密相关,在润滑良好的条件下,偏度值越小润滑状况越优;润滑恶劣的条件下,偏度值越大润滑状况越优;而在各种工况下,峰度值对齿轮润滑状况的影响都表现出峰度值越大润滑状况越优的特点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号