首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
吴丽娟  章中杰  宋月  杨航  胡利民  袁娜 《中国物理 B》2017,26(2):27101-027101
A novel voltage-withstand substrate with high-K (HK, k>3.9, k is the relative permittivity) dielectric and low specific on-resistance (Ron,sp) bulk-silicon, high-voltage LDMOS (HKLR LDMOS) is proposed in this paper. The high-K dielectric and highly doped interface N+-layer are made in bulk silicon to reduce the surface field drift region. The high-K dielectric can fully assist in depleting the drift region to increase the drift doping concentration (Nd) and reshape the electric field distribution. The highly doped N+-layer under the high-K dielectric acts as a low resistance path to reduce the Ron,sp. The new device with the high breakdown voltage (BV), the low Ron,sp, and the excellent figure of merit (FOM=BV2/Ron,sp) is obtained. The BV of HKLR LDMOS is 534 V, Ron,sp is 70.6 mΩ·cm2, and FOM is 4.039 MW·cm-2.  相似文献   

2.
赵逸涵  段宝兴  袁嵩  吕建梅  杨银堂 《物理学报》2017,66(7):77302-077302
为了优化横向双扩散金属氧化物半导体场效应晶体管(lateral double-diffused MOSFET,LDMOS)的击穿特性及器件性能,在传统LDMOS结构的基础上,提出了一种具有纵向辅助耗尽衬底层(assisted depletesubstrate layer,ADSL)的新型LDMOS.新加入的ADSL层使得漏端下方的纵向耗尽区大幅向衬底扩展,从而利用电场调制效应在ADSL层底部引入新的电场峰,使纵向电场得到优化,同时横向表面电场也因为电场调制效应而得到了优化.通过ISE仿真表明,当传统LDMOS与ADSL LDMOS的漂移区长度都是70μm时,击穿电压由462 V增大到897 V,提高了94%左右,并且优值也从0.55 MW/cm~2提升到1.24 MW/cm~2,提升了125%.因此,新结构ADSL LDMOS的器件性能较传统LDMOS有了极大的提升.进一步对ADSL层进行分区掺杂优化,在新结构的基础上,击穿电压在双分区时上升到938 V,三分区时为947 V.  相似文献   

3.
A low specific on-resistance (Ron,sp) integrable silicon-on-insulator (SOI) metal-oxide semiconductor field-effect transistor (MOSFET) is proposed and investigated by simulation. The MOSFET features a recessed drain as well as dual gates which consist of a planar gate and a trench gate extended to the buried oxide layer (BOX) (DGRD MOSFET). First, the dual gates form dual conduction channels, and the extended trench gate also acts as a field plate to improve the electric field distribution. Second, the combination of the trench gate and the recessed drain widens the vertical conduction area and shortens the current path. Third, the P-type top layer not only enhances the drift doping concentration but also modulates the surface electric field distributions. All of these sharply reduce Ron,sp and maintain a high breakdown voltage (BV). The BV of 233 V and Ron,sp of 4.151 mΩ·cm2 (VGS=15 V) are obtained for the DGRD MOSFET with 15-μm half-cell pitch. Compared with the trench gate SOI MOSFET and the conventional MOSFET, Ron,sp of the DGRD MOSFET decreases by 36% and 33% with the same BV, respectively. The trench gate extended to the BOX synchronously acts as a dielectric isolation trench, simplifying the fabrication processes.  相似文献   

4.
A low specific on-resistance(Ron,sp) integrable silicon-on-insulator(SOI) metal-oxide semiconductor field-effect transistor(MOSFET) is proposed and investigated by simulation.The MOSFET features a recessed drain as well as dual gates,which consist of a planar gate and a trench gate extended to the buried oxide layer(BOX)(DGRD MOSFET).First,the dual gates form dual conduction channels,and the extended trench gate also acts as a field plate to improve the electric field distribution.Second,the combination of the trench gate and the recessed drain widens the vertical conduction area and shortens the current path.Third,the P-type top layer not only enhances the drift doping concentration but also modulates the surface electric field distributions.All of these sharply reduce Ron,sp and maintain a high breakdown voltage(BV).The BV of 233 V and Ron,sp of 4.151 mΩ·cm2(VGS = 15 V) are obtained for the DGRD MOSFET with 15-μm half-cell pitch.Compared with the trench gate SOI MOSFET and the conventional MOSFET,Ron,sp of the DGRD MOSFET decreases by 36% and 33% with the same BV,respectively.The trench gate extended to the BOX synchronously acts as a dielectric isolation trench,simplifying the fabrication processes.  相似文献   

5.
A novel low specific on-resistance (Ron,sp) lateral double-diffused metal oxide semiconductor (LDMOS) with a buried improved super-junction (BISJ) layer is proposed. A super-junction layer is buried in the drift region and the P pillar is split into two parts with different doping concentrations. Firstly, the buried super-junction layer causes the multiple-direction assisted depletion effect. The drift region doping concentration of the BISJ LDMOS is therefore much higher than that of the conventional LDMOS. Secondly, the buried super-junction layer provides a bulk low on-resistance path. Both of them reduce Ron,sp greatly. Thirdly, the electric field modulation effect of the new electric field peak introduced by the step doped P pillar improves the breakdown voltage (BV). The BISJ LDMOS exhibits a BV of 300 V and Ron,sp of 8.08 mΩ·cm2 which increases BV by 35% and reduces Ron,sp by 60% compared with those of a conventional LDMOS with a drift length of 15 μm, respectively.  相似文献   

6.
罗小蓉  姚国亮  陈曦  王琦  葛瑞  Florin Udrea 《中国物理 B》2011,20(2):28501-028501
A low specific on-resistance (R S,on) silicon-on-insulator (SOI) trench MOSFET (metal-oxide-semiconductor-field-effect-transistor) with a reduced cell pitch is proposed.The lateral MOSFET features multiple trenches:two oxide trenches in the drift region and a trench gate extended to the buried oxide (BOX) (SOI MT MOSFET).Firstly,the oxide trenches increase the average electric field strength along the x direction due to lower permittivity of oxide compared with that of Si;secondly,the oxide trenches cause multiple-directional depletion,which improves the electric field distribution and enhances the reduced surface field (RESURF) effect in the SOI layer.Both of them result in a high breakdown voltage (BV).Thirdly,the oxide trenches cause the drift region to be folded in the vertical direction,leading to a shortened cell pitch and a reduced R S,on.Fourthly,the trench gate extended to the BOX further reduces R S,on,owing to the electron accumulation layer.The BV of the MT MOSFET increases from 309 V for a conventional SOI lateral double diffused metal-oxide semiconductor (LDMOS) to 632 V at the same half cell pitch of 21.5 μm,and R S,on decreases from 419 m · cm 2 to 36.6 m · cm 2.The proposed structure can also help to dramatically reduce the cell pitch at the same breakdown voltage.  相似文献   

7.
An ultra-low specific on-resistance trench gate vertical double-diffused metal-oxide semiconductor with a high-k dielectric-filled extended trench(HK TG VDMOS) is proposed in this paper.The HK TG VDMOS features a high-k(HK) trench below the trench gate.Firstly,the extended HK trench not only causes an assistant depletion of the n-drift region,but also optimizes the electric field,which therefore reduces Ron,sp and increases the breakdown voltage(BV).Secondly,the extended HK trench weakens the sensitivity of BV to the n-drift doping concentration.Thirdly,compared with the superjunction(SJ) vertical double-diffused metal-oxide semiconductor(VDMOS),the new device is simplified in fabrication by etching and filling the extended trench.The HK TG VDMOS with BV = 172 V and Ron,sp = 0.85 mΩ·cm2 is obtained by simulation;its Ron,sp is reduced by 67% and 40% and its BV is increased by about 15% and 5%,in comparison with those of the conventional trench gate VDMOS(TG VDMOS) and conventional superjunction trench gate VDMOS(SJ TG CDMOS).  相似文献   

8.
High breakdown voltage and reduced on-resistance are desired characteristics in power MOSFETs. In order to obtain an excellent performance of Trench Gate Power MOSFET, we have proposed a new structure in which a SiGe zone is incorporated in the drift region to reduce on-resistance. Also, the buried oxide is considered in the drift region that surrounds the SiGe zone to increase breakdown voltage. The proposed structure is called a SiGe Zone Trench Gate MOSFET (SZ-TG). Our simulation with two dimensional simulator shows that by reducing an electric field and controlling the effects of parasitic BJT transistor in the SZ-TG structure, we can expand power applications of trench gate power structures.  相似文献   

9.
段宝兴  曹震  袁嵩  袁小宁  杨银堂 《物理学报》2014,63(24):247301-247301
为了突破传统横向双扩散金属-氧化物-半导体器件(lateral double-diffused MOSFET)击穿电压与比导通电阻的极限关系,本文在缓冲层横向双扩散超结功率器件(super junction LDMOS-SJ LDMOS)结构基础上,提出了具有缓冲层分区新型SJ-LDMOS结构.新结构利用电场调制效应将分区缓冲层产生的电场峰引入超结(super junction)表面而优化了SJ-LDMOS的表面电场分布,缓解了横向LDMOS器件由于受纵向电场影响使横向电场分布不均匀、横向单位耐压量低的问题.利用仿真分析软件ISE分析表明,优化条件下,当缓冲层分区为3时,提出的缓冲层分区SJ-LDMOS表面电场最优,击穿电压达到饱和时较一般LDMOS结构提高了50%左右,较缓冲层SJ-LDMOS结构提高了32%左右,横向单位耐压量达到18.48 V/μm.击穿电压为382 V的缓冲层分区SJ-LDMOS,比导通电阻为25.6 mΩ·cm2,突破了一般LDMOS击穿电压为254 V时比导通电阻为71.8 mΩ·cm2的极限关系.  相似文献   

10.
A low specific on-resistance SO1 LDMOS with a novel junction field plate (JFP) is proposed and investigated theo- retically. The most significant feature of the JFP LDMOS is a PP-N junction field plate instead of a metal field plate. The unique structure not only yields charge compensation between the JFP and the drift region, but also modulates the surface electric field. In addition, a trench gate extends to the buffed oxide layer (BOX) and thus widens the vertical conduction area. As a result, the breakdown voltage (BV) is improved and the specific on-resistance (Ron,sp) is decreased significantly. It is demonstrated that the BV of 306 V and the Ron,sp of 7.43 mΩ.cm2 are obtained for the JFP LDMOS. Compared with those of the conventional LDMOS with the same dimensional parameters, the BV is improved by 34.8%, and the Ron,sp is decreased by 56.6% simultaneously. The proposed JFP LDMOS exhibits significant superiority in terms of the trade-off between BV and Ron,sp. The novel JFP technique offers an alternative technique to achieve high blocking voltage and large current capacity for power devices.  相似文献   

11.
A novel partial silicon-on-insulator laterally double-diffused metal-oxide-semiconductor transistor (PSOI LDMOS) with a thin buried oxide layer is proposed in this paper. The key structure feature of the device is an n+-layer, which is partially buried on the bottom interface of the top silicon layer (PBNL PSOI LDMOS). The undepleted interface n+-layer leads to plenty of positive charges accumulated on the interface, which will modulate the distributions of the lateral and vertical electric fields for the device, resulting in a high breakdown voltage (BV). With the same thickness values of the top silicon layer (10 p.m) and buried oxide layer (0.375 μm), the BV of the PBNL PSOI LDMOS increases to 432 V from 285 V of the conventional PSOI LDMOS, which is improved by 51.6%.  相似文献   

12.
章文通  吴丽娟  乔明  罗小蓉  张波  李肇基 《中国物理 B》2012,21(7):77101-077101
A new high-voltage and low-specific on-resistance (R on,sp ) adaptive buried electrode (ABE) silicon-on-insulator (SOI) power lateral MOSFET and its analytical model of the electric fields are proposed. The MOSFET features are that the electrodes are in the buried oxide (BOX) layer, the negative drain voltage V d is divided into many partial voltages and the output to the electrodes is in the buried oxide layer and the potentials on the electrodes change linearly from the drain to the source. Because the interface silicon layer potentials are lower than the neighboring electrode potentials, the electronic potential wells are formed above the electrode regions, and the hole potential wells are formed in the spacing of two neighbouring electrode regions. The interface hole concentration is much higher than the electron concentration through designing the buried layer electrode potentials. Based on the interface charge enhanced dielectric layer field theory, the electric field strength in the buried layer is enhanced. The vertical electric field E I and the breakdown voltage (BV) of ABE SOI are 545 V/μm and -587 V in the 50 μm long drift region and the 1 μm thick dielectric layer, and a low R on,sp is obtained. Furthermore, the structure also alleviates the self-heating effect (SHE). The analytical model matches the simulation results.  相似文献   

13.
庄翔  乔明  张波  李肇基 《中国物理 B》2012,21(3):037305
This paper discusses the breakdown mechanism and proposes a new simulation and test method of breakdown voltage (BV) for an ultra-high-voltage (UHV) high-side thin layer silicon-on-insulator (SOI) p-channel low-density metal-oxide semiconductor (LDMOS). Compared with the conventional simulation method, the new one is more accordant with the actual conditions of a device that can be used in the high voltage circuit. The BV of the SOI p-channel LDMOS can be properly represented and the effect of reduced bulk field can be revealed by employing the new simulation method. Simulation results show that the off-state (on-state) BV of the SOI p-channel LDMOS can reach 741 (620) V in the 3-μm-thick buried oxide layer, 50-μm-length drift region, and at -400 V back-gate voltage, enabling the device to be used in a 400 V UHV integrated circuit.  相似文献   

14.
王裕如  刘祎鹤  林兆江  方冬  李成州  乔明  张波 《中国物理 B》2016,25(2):27305-027305
An analytical model for a novel triple reduced surface field(RESURF) silicon-on-insulator(SOI) lateral doublediffused metal–oxide–semiconductor(LDMOS) field effect transistor with n-type top(N-top) layer, which can obtain a low on-state resistance, is proposed in this paper. The analytical model for surface potential and electric field distributions of the novel triple RESURF SOI LDMOS is presented by solving the two-dimensional(2D) Poisson's equation, which can also be applied to single, double and conventional triple RESURF SOI structures. The breakdown voltage(BV) is formulized to quantify the breakdown characteristic. Besides, the optimal integrated charge of N-top layer(Q_(ntop)) is derived, which can give guidance for doping the N-top layer. All the analytical results are well verified by numerical simulation results,showing the validity of the presented model. Hence, the proposed model can be a good tool for the device designers to provide accurate first-order design schemes and physical insights into the high voltage triple RESURF SOI device with N-top layer.  相似文献   

15.
A novel silicon carbide(SiC)on silicon(Si)heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer(PBL ...  相似文献   

16.
A novel super-junction lateral double-diffused metal-oxide semiconductor(SJ-LDMOS) with a partial lightly doped P pillar(PD) is proposed.Firstly,the reduction in the partial P pillar charges ensures the charge balance and suppresses the substrate-assisted depletion effect.Secondly,the new electric field peak produced by the P/P-junction modulates the surface electric field distribution.Both of these result in a high breakdown voltage(BV).In addition,due to the same conduction paths,the specific on-resistance(R on,sp) of the PD SJ-LDMOS is approximately identical to the conventional SJ-LDMOS.Simulation results indicate that the average value of the surface lateral electric field of the PD SJ-LDMOS reaches 20V/μm at a 15μm drift length,resulting in a BV of 300V.  相似文献   

17.
石艳梅  刘继芝  姚素英  丁燕红 《物理学报》2014,63(10):107302-107302
为降低绝缘体上硅(SOI)横向双扩散金属氧化物半导体(LDMOS)器件的导通电阻,同时提高器件击穿电压,提出了一种具有纵向漏极场板的低导通电阻槽栅槽漏SOI-LDMOS器件新结构.该结构特征为采用了槽栅槽漏结构,在纵向上扩展了电流传导区域,在横向上缩短了电流传导路径,降低了器件导通电阻;漏端采用了纵向漏极场板,该场板对漏端下方的电场进行了调制,从而减弱了漏极末端的高电场,提高了器件的击穿电压.利用二维数值仿真软件MEDICI对新结构与具有相同器件尺寸的传统SOI结构、槽栅SOI结构、槽栅槽漏SOI结构进行了比较.结果表明:在保证各自最高优值的条件下,与这三种结构相比,新结构的比导通电阻分别降低了53%,23%和提高了87%,击穿电压则分别提高了4%、降低了9%、提高了45%.比较四种结构的优值,具有纵向漏极场板的槽栅槽漏SOI结构优值最高,这表明在四种结构中新结构保持了较低导通电阻,同时又具有较高的击穿电压.  相似文献   

18.
段宝兴  李春来  马剑冲  袁嵩  杨银堂 《物理学报》2015,64(6):67304-067304
为了设计功率集成电路所需的低功耗横向功率器件, 提出了一种具有阶梯氧化层折叠硅横向双扩散金属-氧化物-半导体(step oxide folding LDMOS, SOFLDMOS)新结构. 这种结构将阶梯氧化层覆盖在具有周期分布的折叠硅表面, 利用阶梯氧化层的电场调制效应, 通过在表面电场分布中引入新的电场峰而使表面电场分布均匀, 提高了器件的耐压范围, 解决了文献提出的折叠积累型横向双扩散金属-氧化物-半导体器件击穿电压受限的问题. 通过三维仿真软件ISE分析获得, SOFLDMOS 结构打破了硅的极限关系, 充分利用了电场调制效应、多数载流子积累和硅表面导电区倍增效应, 漏极饱和电流比一般LDMOS 提高3.4倍左右, 可以在62 V左右的反向击穿电压条件下, 获得0.74 mΩ·cm2超低的比导通电阻, 远低于传统LDMOS相同击穿电压下2.0 mΩ·cm2比导通电阻, 为实现低压功率集成电路对低功耗横向功率器件的要求提供了一种可选的方案.  相似文献   

19.
李春来  段宝兴  马剑冲  袁嵩  杨银堂 《物理学报》2015,64(16):167304-167304
为了设计功率集成电路所需要的低功耗横向双扩散金属氧化物半导体器件(lateral double-diffused MOSFET), 在已有的N型缓冲层超级结LDMOS(N-buffered-SJ-LDMOS)结构基础上, 提出了一种具有P型覆盖层新型超级结LDMOS结构(P-covered-SJ-LDMOS). 这种结构不但能够消除传统的N沟道SJ-LDMOS由于P型衬底产生的衬底辅助耗尽问题, 使得超级结层的N区和P区的电荷完全补偿, 而且还能利用覆盖层的电荷补偿作用, 提高N型缓冲层浓度, 从而降低了器件的比导通电阻. 利用三维仿真软件ISE分析表明, 在漂移区长度均为10 μm的情况下, P-covered-SJ-LDMOS的比导通电阻较一般SJ-LDMOS结构降低了59%左右, 较文献提出的N型缓冲层 SJ-LDMOS(N-buffered-SJ-LDMOS)结构降低了43%左右.  相似文献   

20.
In this paper, a novel structure of a 4H-SiC lateral bipolar junction transistor (LBJT) with a base field plate and double RESURF in the drift region is presented. Collector-base junction depletion extension in the base region is restricted by the base field plate. Thin base as well as low base doping of the LBJT therefore can be achieved under the condition of avalanche breakdown. Simulation results show that thin base of 0.32 μm and base doping of 3×1017 cm-3 are obtained, and corresponding current gain is as high as 247 with avalanche breakdown voltage of 3309 V when the drift region length is 30 μm. Besides, an investigation of a 4H-SiC vertical BJT (VBJT) with comparable breakdown voltage (3357 V) shows that the minimum base width of 0.25 μm and base doping as high as 8×1017 cm-3 contribute to a maximum current gain of only 128.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号