首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
运用电致发光(EL)和光致发光(PL)实验,分析了图形化蓝宝石衬底(PSSLEDs)和常规平面蓝宝石衬底(C-LEDs)InGaN/GaN多量子阱发光二极管的光谱特性。对比EL谱,发现PSSLEDs拥有更强的光功率和更窄的半峰宽(FWHM),说明PSSLEDs具有较高的晶体质量。其次,PSSLEDs的EL谱半峰宽随电流增加出现了更快的展宽,而这两种LED样品的PL谱半峰宽随激光功率增加呈现了基本相同的展宽变化,说明在相同电流下,PSSLEDs量子阱中载流子浓度更高,能带填充效应更强。另外,随着电流的增加,PSSLEDs和C-LEDs的峰值波长都发生蓝移,且前者的蓝移程度较小,结合半峰宽的对比分析,说明PSSLEDs量子阱中的极化电场较小。最后,对比了PSSLEDs和C-LEDs的外量子效率随电流的变化,发现PSSLEDs拥有更严重的efficiency droop,说明量子阱中极化电场不是导致efficiency droop的主要原因。  相似文献   

2.
3.
Blue InGaN/GaN multiple quantum well (MQW) light-emitting diodes (LEDs) are simulated by the APSYS software with a non-local quantum well transport model which is used to describe the phenomenon that carriers can fly over the quantum wells directly. The simulation results based on this model are in good agreement with the experiment and show its significant influence on the output power, carrier transport, peak wavelength and current crowding effect of the InGaN/GaN MQW LEDs, indicating that the non-local quantum well transport plays an important role in these devices.  相似文献   

4.
GaN/InGaN superlattice barriers are used in InGaN-based light-emitting diodes (LEDs). The electrostatic field in the quantum wells, electron hole wavefunction overlap, carrier concentration, spontaneous emission spectrum, light-current performance curve, and internal quantum efficiency are numerically investigated using the APSYS simulation software. It is found that the structure with GaN/InGaN superlattice barriers shows improved light output power, and lower current leakage and efficiency droop. According to our numerical simulation and analysis, these improvements in the electrical and optical characteristics are mainly attributed to the alleviation of the electrostatic field in the active region.  相似文献   

5.
6.
We employed the APSYS software to perform 3D electrical and ray-tracing simulations on micro-ring light-emitting diodes (LEDs) to verify previous experimental findings that they have higher extraction efficiency than micro-disk and broad area LEDs. 3D ray-tracing indicates the importance of inter-ring optical interactions. Furthermore we found that the higher light extraction efficiency is at the expense of reduced internal quantum efficiency (IQE) as injection current is increased.  相似文献   

7.
GaN-based multiple quantum well light-emitting diodes (LEDs) with conventional and superlattice barriers have been investigated numerically. Simulation results demonstrate using InGaN/GaN superlattices as barriers can effectively enhance performances of the GaN-Based LEDs, mainly owing to the improvement of hole injection and transport among the MQW active region. Meanwhile, the improved electron capture decreases the electron leakage and alleviates the efficiency droop. The weak polarization field induced by the superlattice structure strengthens the intensity of the emission spectrum and leads to a blue-shift relative to the conventional one.  相似文献   

8.
A new method for patterned sapphire substrate(PSS) design is developed and proven to be reliable and cost-effective.As progress is made with LEDs' luminous efficiency,the pattern units of PSS become more complicated,and the effect of complicated geometrical features is almost impossible to study systematically by experiments only.By employing our new method,the influence of pattern parameters can be systematically studied,and various novel patterns are designed and optimized within a reasonable time span,with great improvement in LEDs' light extraction efficiency(LEE).Clearly,PSS pattern design with such a method deserves particular attention.We foresee that GaN-based LEDs on these newly designed PSSs will achieve more progress in the coming years.  相似文献   

9.
10.
High-power and high-reliability GaN/InGaN flip-chip light-emitting diodes (FCLEDs) have been demonstrated by employing a flip-chip design, and its fabrication process is developed. FCLED is composed of a LED die and a submount which is integrated with circuits to protect the LED from electrostatic discharge (ESD) damage. The LED die is flip-chip soldered to the submount, and light is extracted through the transparent sapphire substrate instead of an absorbing Ni/Au contact layer as in conventional GaN/InGaN LED epitaxial designs. The optical and electrical characteristics of the FCLED are presented. According to ESD IEC61000-4-2 standard (human body model), the FCLEDs tolerated at least 10\,kV ESD shock have ten times more capacity than conventional GaN/InGaN LEDs. It is shown that the light output from the FCLEDs at forward current 350mA with a forward voltage of 3.3\,V is 144.68\,mW, and 236.59\,mW at 1.0\,A of forward current. With employing an optimized contact scheme the FCLEDs can easily operate up to 1.0\,A without significant power degradation or failure. The life test of FCLEDs is performed at forward current of 200\,mA at room temperature. The degradation of the light output power is no more than 9\% after 1010.75\,h of life test, indicating the excellent reliability. FCLEDs can be used in practice where high power and high reliability are necessary, and allow designs with a reduced number of LEDs.  相似文献   

11.
We report a 2D simulation of electrical and optical characteristics of green color InGaN/GaN multiple quantum well light-emitting diodes by APSYS software with a dot-in-well model. The In-rich quantum dot-like structure in InGaN/GaN multiple quantum wells has been considered in the LED experimental data analysis. Simulation results based on the quantum dot model are in better agreement with the experimental data than those based on the purely quantum well model, indicating that the quantum dot spontaneous emission and the non-equilibrium quantum transport play important roles in the InGaN/GaN multiple quantum well light-emitting diodes.  相似文献   

12.
In this study, an InGaN lighting-emitting diode(LED) containing GaN/AlGaN/GaN triangular barriers is proposed and investigated numerically. The simulation results of output performance, carrier concentration, and radiative recombination rate indicate that the proposed LED has a higher output power and an internal quantum efficiency, and a lower efficiency droop than the LED containing conventional GaN or AlGaN barriers. These improvements mainly arise from the modified energy bands, which is evidenced by analyzing the LED energy band diagram and electrostatic field near the active region.The modified energy bands effectively improve carrier injection and confinement, which significantly reduces electron leakage and increases the rate of radiative recombination in the quantum wells.  相似文献   

13.
The blue InGaN light-emitting diodes (LEDs), employing a lattice-compensated p-AlGaN/InGaN superlattice (SL) interlayer to link the last quantum barrier and electron blocking layer (EBL), are proposed and investigated numerically. The simulation results indicate that the newly designed LEDs have better hole injection efficiency, lower electron leakage, and smaller electrostatic fields in the active region over the conventional LEDs mainly attributed to the mitigated polarization-induced downward band bending. Furthermore, the markedly improved output power and efficiency droop are also suggested when the conventional LEDs corresponding to experiment data are replaced by the newly designed LEDs.  相似文献   

14.
李为军  张波  徐文兰  陆卫 《物理学报》2009,58(5):3421-3426
分别采用量子阱模型和量子点模型对蓝色InGaN/GaN多量子阱发光二极管电学和光学特性进行模拟,并和实验测量结果进行了比对,结果发现,量子点模型的引入,很好地解决了I-V和电致发光二方面的实验与理论模型间符合程度不好的问题.同时,在I-V曲线特性模拟中发现,在量子点理论模型的基础上,只有考虑到载流子的非平衡量子传输效应,才能得到和实验相接近的I-V曲线,揭示着在InGaN/GaN 多量子阱发光二极管电输运特性中,载流子的非 关键词: InGaN/GaN 发光二极管 数值模拟 量子点模型  相似文献   

15.
The effects of InGaN light-emitting diodes (LEDs) with InGaN and composition-graded InGaN interlayers in the space of multiple quantum wells and electron blocking layer are studied numerically. The electrostatic field, energy band diagrams, carrier concentrations, light–current–voltage performances, and internal quantum efficiency (IQE) are investigated. Simulation results show that the light output power and IQE are both largely improved over the conventional LED structure due to the improvement in hole injection efficiency and electron blocking capability, especially for the LED with composition-graded InGaN interlayer.  相似文献   

16.
刘木林  闵秋应  叶志清 《物理学报》2012,61(17):178503-178503
InGaN/GaN基阱垒结构LED当注入的电流密度较大时, LED的量子效率随注入电流密度增大而下降, 即droop效应.本文在Si (111)衬底上生长了 InGaN/GaN 基蓝光多量子阱结构的LED,通过将实验测量的光电性能曲线与利用ABC模型模拟的结果进行对比, 探讨了droop效应的成因.结果显示:温度下降会阻碍电流扩展和降低空穴浓度, 电子在阱中分布会越来越不平衡,阱中局部区域中因填充了势能越来越高的电子而溢出阱外, 从而使droop效应随着温度的降低在更小的电流密度下出现且更为严重, 不同温度下实验值与俄歇复合模型模拟的结果在高注入时趋势相反.这此结果表明,引起 droop效应的主因不是俄歇非辐射复合而是电子溢出,电子溢出的本质原因是载流子在阱中分布不均衡.  相似文献   

17.
利用金属有机物化学气相沉积系统在蓝宝石衬底上通过有源层的变温生长,得到In组分渐变的量子阱结构,从而获得具有三角形能带结构的InGaN/GaN多量子阱发光二极管(LED)(简称三角形量子阱结构LED).变温光致发光谱结果表明,相对于传统具有方形能带结构的量子阱LED(简称方形量子阱结构LED),三角形量子阱结构有效提高了量子阱中电子和空穴波函数的空间交叠,从而增加了LED的内量子效率;电致发光谱结果表明,三角形量子阱结构LED器件与传统结构LED器件相比,明显改善了发光峰值波长随着电流的蓝移现象.通过以上  相似文献   

18.
InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum wells are numerically investigated by using the APSYS simulation software. It is found that the structure with dip-shaped quantum wells shows improved light output power, lower current leakage and less efficiency droop. Based on numerical simulation and analysis, these improvements on the electrical and the optical characteristics are attributed mainly to the alleviation of the electrostatic field in dip-shaped InGaN/GaN multiple quantum wells (MQWs).  相似文献   

19.
The advantages of InGaN based light-emitting diodes with InGaN/GaN multilayer barriers are studied.It is found that the structure with InGaN/GaN multilayer barriers shows improved light output power,lower current leakage,and less efficiency droop over its conventional InGaN/GaN counterparts.Based on the numerical simulation and analysis,these improvements on the electrical and the optical characteristics are mainly attributed to the alleviation of the electrostatic field in the quantum wells(QWs) when the InGaN/GaN multilayer barriers are used.  相似文献   

20.
P-A1GaN/P-GaN superlattices are investigated in blue InGaN light-emitting diodes as electron blocking layers. The simulation results show that efficiency droop is markedly improved due to two reasons: (i) enhanced hole concentration and hole carrier transport efficiency in A1GaN/GaN superlattices, and (ii) enhanced blocking of electron overflow between multiple quantum-wells and A1CaN/GaN superlattices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号