首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
航空发动机叶尖间隙影像测量系统及其标定   总被引:1,自引:1,他引:0       下载免费PDF全文
针对航空发动机装配过程中叶尖间隙的测量,设计了一种影像测量系统,采用基于PC+运动控制卡的开放控制系统,通过PID控制实现对相机位置的精确控制。提出基于相机位置的精确快速完成相机标定,可在线准确测量出叶尖间隙值。相比其他光学影像测量系统及传统塞尺,该测量系统无需高精度标定参考物,可实现装配过程在线测量,测量范围为1 mm时误差小于20 m。  相似文献   

2.
郑臣  朱目成 《应用光学》2014,35(5):835-840
针对航空涡轮发动机叶尖间隙测量难度大、精确度不高的问题,提出利用影像测量技术对装配过程中的叶尖间隙进行高精度测量,采用自定义标定、改进的边缘检测和Hough变换、图像超分辨率复原技术,通过运动控制机构、工业CCD摄像机、计算机视觉库,设计了独特的图像测量体系,实现了叶尖间隙的高精度非接触测量。实验结果表明,测量精度达到了15 m,与其他叶尖间隙测量以及影像测量系统相比,该方法不仅精确度有所提高,而且移植性好、成本低。  相似文献   

3.
发动机转子叶片叶尖到开半机匣内壁径向距离是衡量发动机质量是否合格的一个重要指标,其值的大小对发动机的高效安全运行至关重要。利用立体视觉原理、自动聚焦技术和边缘检测算法,设计了一套发动机装配过程中叶尖间隙静态测量装置。该测量装置实现了对发动机叶尖间隙的非接触测量,且操作简单,测量精度高。实验结果表明该套装置测量精度达到20 m。  相似文献   

4.
扇形叶栅叶尖间隙流动及其对叶尖换热的影响   总被引:2,自引:0,他引:2  
本文通过在水槽中用粒子示踪的方法,利用最新的PIV技术对扇形叶栅叶尖间隙泄漏流进行了定量流动显示。同时在风洞中利用萘升华传质模拟传热技术,研究了叶尖间隙区的局部换热特性结果表明泄漏流的流动特性与间隙大小、进口Re数、攻角等密切相关,并直接影响叶尖的换热特性。  相似文献   

5.
光纤传感器实验研究   总被引:1,自引:0,他引:1  
本介绍了利用光纤传感器测量位移与振动的实验研究,并提出了扩展实验内容。  相似文献   

6.
全光纤低相干光纤位移传感技术   总被引:1,自引:1,他引:1  
李力  王春华 《光学学报》1997,17(9):265-1269
提出并演示了一种由两光纤构成的杨氏干涉解调系统的全光纤低相干光纤位移传感器系统。该技术从根本上避免了光源频率、光强的波动,及光在传输过程中由系统带来的损耗、光的偏振方向的改变引起的信号衰落问题。其结构简单,易于调整,测量分辨率可达0.054mm。  相似文献   

7.
周璐  任磊  谭新洪  刘晴晴  杜建邦 《应用声学》2014,22(8):2435-2437,2450
针对光纤陀螺动态寻北仪实际应用中存在的转位误差以及高频测量噪声问题,对寻北仪转位机构引入低通滤波和反馈回路,设计出了一种新的转位控制系统,有效地减小了由于光纤陀螺和转位机构的误差带来的系统误差,从而提高了动态寻北仪的寻北精度;实验结果表明,相同条件下该控制系统能有效缩短寻北时间,提高定位精度至4″,具有较好工程实用前景。  相似文献   

8.
本文从理论上阐述了微小位移光纤传感器的一种分频比较法解调方案,并利用全光纤干涉光路进行了实验,结果表明采用这种解调方法可提高光纤传感器的测试精度、稳定性和动态范围。  相似文献   

9.
本文报导了以光纤光栅作为传感元件的多点动态测量实验系统。本系统采用干涉法作动态信号的解调。动态测量的频率范围为100Hz至10kHz,在5KHz处的分辨率为27.5nε/√Hz,测量点数为1-4点。  相似文献   

10.
利用光纤传感器测量金属丝的杨氏模量   总被引:2,自引:0,他引:2  
将反射式光纤位移传感器应用于杨氏模量测定仪,可以精确地测定金属丝杨氏模量。  相似文献   

11.
光谱吸收型光纤气体传感器解调系统的研究   总被引:1,自引:0,他引:1  
提出了一种基于计算机的光纤气体传感器谐波检测的实验室解调方案。系统采用分布反馈式半导体激光器和数据采集卡,并利用所设计的解调软件进行信号解调,实现了气体浓度的谐波检测,并能实时显示采集波形及分析波形。  相似文献   

12.
介绍光纤传感器的测量原理,并对位移和转速测量进行研究,利用matlab软件对位移测量结果进行曲线拟合,且将光纤传感器和电涡流传感器的转速测量结果进行比较,最后得出利用光纤传感器进行测量具有电路结构简单、精度高、光路弯曲等优点。  相似文献   

13.
MeasurementofSolid┐gasTwo┐phaseFlowusingOpticalFiberSensorFANHuaCHENYuandiTANYushan(InstituteofLaser&InfraredApplicationsinXi...  相似文献   

14.
海水盐度和温度实时检测的新型光纤传感器研究   总被引:8,自引:0,他引:8  
赵勇  廖延彪 《光学学报》2002,22(10):241-1244
提出了一种新颖的用于海水温度和盐度同时实时探测的光纤传感器系统。分别利用半导体材料吸收光谱的临界极限值随温度变化发生移动而导致出射光强改变的特性和待测液体盐度变化引起传输光折射角改变导致接收端光线偏移的性质,通过反射式的结构设计和线阵排列的接收光纤信号传输至海面以上,并由CCD实现对光强峰值信号及其偏移量的采集。传感器由一直角棱镜、本征GaAs单晶体薄片、装有参考液和待测液的水槽、接收光纤阵列等部分组成。理论分析和仿真结果验证了传感器设计的可行性。  相似文献   

15.
分布型光纤拉曼光子温度传感器系统的测温精度   总被引:8,自引:4,他引:8  
在分布型光纤拉曼光子温度传感器(DOFRPTS)系统中,自发拉曼光子是温度信息的载体,在2km光纤上实时采样1000个点,用于空间温度场分布的测量。系统采用拉曼光时域反射技术,对所测点进行定位。对分布光纤拉曼光子温度传感器系统的测温精度进行了讨论,由系统的信噪比来确定测温精度,提出了改善测温精度的方法,实际系统的测温精度达±1℃。  相似文献   

16.
罗小东  饶云江  冉曾令 《光学学报》2007,27(8):1393-1396
在基于掺铒光纤-拉曼混合放大的可调光纤环形激光器的光纤布拉格光栅(FBG)传感系统结构基础上,提出了延长传感距离的新方法。该方法以环形掺铒光纤激光器作为光源,采用双波长拉曼放大的方法对信号进行低噪声的双向放大,系统中间的两段掺铒光纤再利用剩余的抽运功率产生自发辐射光和放大传感信号,使得整个系统能够在超长的传感距离上获得很高的信噪比。实验表明使用一只40 mW的掺铒光纤放大(EDFA)抽运源、一只170 mW的拉曼抽运源和一只2 W的拉曼抽运源,可以使整个系统的传感距离达到100km,并且传感系统的光纤布拉格光栅反射信号均能获得超过57 dB的优良信噪比,从而实现在超长距离上的光纤布拉格光栅传感。  相似文献   

17.
王玉田  杨丽丽  鲁信琼 《光学学报》2008,28(s2):358-361
为了解决特殊环境下的瞬态高温测量, 设计了一种基于黑体辐射的光纤高温传感器及动态测试系统。根据辐射测温的基本原理, 结合光纤传感技术, 采用了“接触-非接触”测量方法和光纤光栅窄带滤波技术, 提高了测量精度, 减小了背景光的影响。由于瞬态温度随时间变化快, 动态误差大, 探索了一种利用大功率高频CO2激光器作为激励源, 用激光脉冲加热被校传感器。用测得的温度信号对被校传感器进行可溯源高温动态校准的新方案。实验结果表明, 系统测温范围为800~2000 ℃, 并具有精度高, 响应快, 抗电磁干扰, 性能稳定的特点, 解决了热电偶响应速度慢, 寿命短的缺陷, 为冶金、石油、化工、武器研制等领域的瞬态高温测量提供了一种新的测试手段。  相似文献   

18.
提出了一种全角度并且可以连续测量微小角位移(秒级)的新型光纤角位移传感器.利用微小光学谐振腔的基本理论,主要是基于光学法布里-珀罗(Fabry-Perot)腔的基本原理研究特定光波下光强度的变化与角位移的线性变化关系,利用光纤技术、敏感技术融合微机械技术研发而成.适合于一些特定领域中对角位移的精确测量.  相似文献   

19.
1 Introduction  Peoplefocustheirattentionontheresearchanddevelopmentofopticalfibertemperaturesensorsystemsbecauseofavarietyofadvantages ,suchaseasetoinstalandmaintain,immunitytoelectromagneticinterference (EMI) ,safetyinhazardousenvironments.Thesefeatures…  相似文献   

20.
激光拉曼型分布光纤温度传感器系统   总被引:22,自引:3,他引:22  
张在宣  刘天夫 《光学学报》1995,15(11):585-1589
激光拉螺型分布光纤温度传感器系统是一种用于实时测量空间温度场分布的光纤传感系统,在系统中光纤既是传输媒体也是传感媒体。本文讨论了系统的工作原理、设计思想、系统的结构,在系统中采用光纤的光时域反射技术,背向光纤激光自发拉曼光谱技术,双波长、双通道光电检测和自校正技术,高速瞬态采样平均技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号