首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A completely regular semigroup is a (disjoint) union of its (maximal) subgroups. We consider it here with the unary operation of inversion within its maximal subgroups. Their totality \(\mathcal {C}\mathcal {R}\) forms a variety whose lattice of subvarieties is denoted by \(\mathcal {L}(\mathcal {C}\mathcal {R})\). On it, one defines the relations \(\mathbf {B}^\wedge \) and \(\mathbf {B}^\vee \) by
$$\begin{aligned} \begin{array}{lll} \mathcal {U}\ \mathbf {B}^\wedge \ \mathcal {V}&{} \Longleftrightarrow &{} \mathcal {U}\cap \mathcal {B} =\mathcal {V}\cap \mathcal {B}, \\ \mathcal {U}\ \mathbf {B}^\vee \ \mathcal {V}&{} \Longleftrightarrow &{} \mathcal {U}\vee \mathcal {B} =\mathcal {V}\vee \mathcal {B} , \end{array} \end{aligned}$$
respectively, where \(\mathcal {B}\) denotes the variety of all bands. This is a study of the interplay between the \(\cap \)-subsemilatice \(\triangle \) of \(\mathcal {L}(\mathcal {C}\mathcal {R})\) of upper ends of \(\mathbf {B}^\wedge \)-classes and their \(\mathbf {B}^\vee \)-classes. The main tool is the concept of a ladder and their \(\mathbf {B}^\vee \)-classes, an indispensable part of the important Polák’s theorem providing a construction for the join of varieties of completely regular semigroups. The paper includes the tables of ladders of the upper ends of most \(\mathbf {B}^\wedge \)-classes. Canonical varieties consist of two ascending countably infinite chains which generate most of the upper ends of \(\mathbf {B}^\wedge \)-classes.
  相似文献   

2.
Let \({\mathbb {K}(\mathbb {R}^{d})}\) denote the cone of discrete Radon measures on \(\mathbb {R}^{d}\). There is a natural differentiation on \(\mathbb {K}(\mathbb {R}^{d})\): for a differentiable function \(F:\mathbb {K}(\mathbb {R}^{d})\to \mathbb {R}\), one defines its gradient \(\nabla ^{\mathbb {K}}F\) as a vector field which assigns to each \(\eta \in \mathbb {K}(\mathbb {R}^{d})\) an element of a tangent space \(T_{\eta }(\mathbb {K}(\mathbb {R}^{d}))\) to \(\mathbb {K}(\mathbb {R}^{d})\) at point η. Let \(\phi :\mathbb {R}^{d}\times \mathbb {R}^{d}\to \mathbb {R}\) be a potential of pair interaction, and let μ be a corresponding Gibbs perturbation of (the distribution of) a completely random measure on \(\mathbb {R}^{d}\). In particular, μ is a probability measure on \(\mathbb {K}(\mathbb {R}^{d})\) such that the set of atoms of a discrete measure \(\eta \in \mathbb {K}(\mathbb {R}^{d})\) is μ-a.s. dense in \(\mathbb {R}^{d}\). We consider the corresponding Dirichlet form
$$\mathcal{E}^{\mathbb{K}}(F,G)={\int}_{\mathbb K(\mathbb{R}^{d})}\langle\nabla^{\mathbb{K}} F(\eta), \nabla^{\mathbb{K}} G(\eta)\rangle_{T_{\eta}(\mathbb{K})}\,d\mu(\eta). $$
Integrating by parts with respect to the measure μ, we explicitly find the generator of this Dirichlet form. By using the theory of Dirichlet forms, we prove the main result of the paper: If d ≥ 2, there exists a conservative diffusion process on \(\mathbb {K}(\mathbb {R}^{d})\) which is properly associated with the Dirichlet form \(\mathcal {E}^{\mathbb {K}}\).
  相似文献   

3.
We prove a dichotomy between absolute continuity and singularity of the Ginibre point process \(\mathsf {G}\) and its reduced Palm measures \(\{\mathsf {G}_{\mathbf {x}}, \mathbf {x} \in \mathbb {C}^{\ell }, \ell = 0,1,2\ldots \}\), namely, reduced Palm measures \(\mathsf {G}_{\mathbf {x}}\) and \(\mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x} \in \mathbb {C}^{\ell }\) and \(\mathbf {y} \in \mathbb {C}^{n}\) are mutually absolutely continuous if and only if \(\ell = n\); they are singular each other if and only if \(\ell \not = n\). Furthermore, we give an explicit expression of the Radon–Nikodym density \(d\mathsf {G}_{\mathbf {x}}/d \mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x}, \mathbf {y} \in \mathbb {C}^{\ell }\).  相似文献   

4.
Given a vector \(\mathbf {a}\in \mathbb {R}^n\), we provide an alternative and direct proof for the formula of the volume of sections \(\Delta \cap \{\mathbf {x}: \mathbf {a}^T\mathbf {x}<= t\}\) and slices \(\Delta \cap \{\mathbf {x}:\mathbf {a}^T\mathbf {x}= t\}\), \(t\in \mathbb {R}\), of the simplex \(\Delta \). For slices the formula has already been derived but as a by-product of the construction of univariate B-Splines. One goal of the paper is to also show how simple and powerful the Laplace transform technique can be to derive closed form expressions for some multivariate integrals. It also complements some previous results obtained for the hypercube \([0,1]^n\).  相似文献   

5.
Let \({\mathcal {N}}_m\) be the group of \(m\times m\) upper triangular real matrices with all the diagonal entries 1. Then it is an \((m-1)\)-step nilpotent Lie group, diffeomorphic to \({\mathbb {R}}^{\frac{1}{2} m(m-1)}\). It contains all the integer matrices as a lattice \(\Gamma _m\). The automorphism group of \({\mathcal {N}}_m \ (m\ge 4)\) turns out to be extremely small. In fact, \(\mathrm {Aut}({\mathcal {N}})=\mathcal {I} \rtimes \mathrm {Out}({\mathcal {N}})\), where \(\mathcal {I}\) is a connected, simply connected nilpotent Lie group, and \(\mathrm {Out}({\mathcal {N}})={{\tilde{K}}}={(\mathbb {R}^*)^{m-1}\rtimes \mathbb {Z}_2}\). With a nice left-invariant Riemannian metric on \({\mathcal {N}}\), the isometry group is \(\mathrm {Isom}({\mathcal {N}})= {\mathcal {N}} \rtimes K\), where \(K={(\mathbb {Z}_2)^{m-1}\rtimes \mathbb {Z}_2}\subset {{\tilde{K}}}\) is a maximal compact subgroup of \(\mathrm {Aut}({\mathcal {N}})\). We prove that, for odd \(m\ge 4\), there is no infra-nilmanifold which is essentially covered by the nilmanifold \(\Gamma _m\backslash {\mathcal {N}}_m\). For \(m=2n\ge 4\) (even), there is a unique infra-nilmanifold which is essentially (and doubly) covered by the nilmanifold \(\Gamma _m\backslash {\mathcal {N}}_m\).  相似文献   

6.
The gradient descent method minimizes an unconstrained nonlinear optimization problem with \({\mathcal {O}}(1/\sqrt{K})\), where K is the number of iterations performed by the gradient method. Traditionally, this analysis is obtained for smooth objective functions having Lipschitz continuous gradients. This paper aims to consider a more general class of nonlinear programming problems in which functions have Hölder continuous gradients. More precisely, for any function f in this class, denoted by \({{\mathcal {C}}}^{1,\nu }_L\), there is a \(\nu \in (0,1]\) and \(L>0\) such that for all \(\mathbf{x,y}\in {{\mathbb {R}}}^n\) the relation \(\Vert \nabla f(\mathbf{x})-\nabla f(\mathbf{y})\Vert \le L \Vert \mathbf{x}-\mathbf{y}\Vert ^{\nu }\) holds. We prove that the gradient descent method converges globally to a stationary point and exhibits a convergence rate of \({\mathcal {O}}(1/K^{\frac{\nu }{\nu +1}})\) when the step-size is chosen properly, i.e., less than \([\frac{\nu +1}{L}]^{\frac{1}{\nu }}\Vert \nabla f(\mathbf{x}_k)\Vert ^{\frac{1}{\nu }-1}\). Moreover, the algorithm employs \({\mathcal {O}}(1/\epsilon ^{\frac{1}{\nu }+1})\) number of calls to an oracle to find \({\bar{\mathbf{x}}}\) such that \(\Vert \nabla f({{\bar{\mathbf{x}}}})\Vert <\epsilon \).  相似文献   

7.
The paper concerns investigations of holomorphic functions of several complex variables with a factorization of their Temljakov transform. Firstly, there were considered some inclusions between the families \(\mathcal {C}_{\mathcal {G}},\mathcal {M}_{\mathcal {G}},\mathcal {N}_{\mathcal {G}},\mathcal {R}_{\mathcal {G}},\mathcal {V}_{\mathcal {G}}\) of such holomorphic functions on complete n-circular domain \(\mathcal {G}\) of \(\mathbb {C}^{n}\) in some papers of Bavrin, Fukui, Higuchi, Michiwaki. A motivation of our investigations is a condensation of the mentioned inclusions by some new families of Bavrin’s type. Hence we consider some families \(\mathcal {K}_{ \mathcal {G}}^{k},k\ge 2,\) of holomorphic functions f :  \(\mathcal {G}\rightarrow \mathbb {C},f(0)=1,\) defined also by a factorization of \( \mathcal {L}f\) onto factors from \(\mathcal {C}_{\mathcal {G}}\) and \(\mathcal {M} _{\mathcal {G}}.\) We present some interesting properties and extremal problems on \(\mathcal {K}_{\mathcal {G}}^{k}\).  相似文献   

8.
Let \(\mathfrak {g}\) be a simple complex Lie algebra and let \(\mathfrak {t} \subset \mathfrak {g}\) be a toral subalgebra of \(\mathfrak {g}\). As a \(\mathfrak {t}\)-module \(\mathfrak {g}\) decomposes as
$$\mathfrak{g} = \mathfrak{s} \oplus \left( \oplus_{\nu \in \mathcal{R}}~ \mathfrak{g}^{\nu}\right)$$
where \(\mathfrak {s} \subset \mathfrak {g}\) is the reductive part of a parabolic subalgebra of \(\mathfrak {g}\) and \(\mathcal {R}\) is the Kostant root system associated to \(\mathfrak {t}\). When \(\mathfrak {t}\) is a Cartan subalgebra of \(\mathfrak {g}\) the decomposition above is nothing but the root decomposition of \(\mathfrak {g}\) with respect to \(\mathfrak {t}\); in general the properties of \(\mathcal {R}\) resemble the properties of usual root systems. In this note we study the following problem: “Given a subset \(\mathcal {S} \subset \mathcal {R}\), is there a parabolic subalgebra \(\mathfrak {p}\) of \(\mathfrak {g}\) containing \(\mathcal {M} = \oplus _{\nu \in \mathcal {S}} \mathfrak {g}^{\nu }\) and whose reductive part equals \(\mathfrak {s}\)?”. Our main results is that, for a classical simple Lie algebra \(\mathfrak {g}\) and a saturated \(\mathcal {S} \subset \mathcal {R}\), the condition \((\text {Sym}^{\cdot }(\mathcal {M}))^{\mathfrak {s}} = \mathbb {C}\) is necessary and sufficient for the existence of such a \(\mathfrak {p}\). In contrast, we show that this statement is no longer true for the exceptional Lie algebras F4,E6,E7, and E8. Finally, we discuss the problem in the case when \(\mathcal {S}\) is not saturated.
  相似文献   

9.
This paper is devoted to study a class of systems of nonlinear Schrödinger equations: \(\left\{\begin{array}{rcl} -\Delta u+u-u^{3}=\epsilon v, \\ -\Delta v+v-v^{3}=\epsilon u, \end{array}\right.\) in \(\mathbb{R}^{n}\) with dimension n = 1,2,3. Our main result states that if \(\mathcal{P}\) denotes a regular polytope centered at the origin of \(\mathbb{R}^{n}\) such that its side is greater than the radius, then there exists a solution with one multi-bump component having bumps located near the vertices of \(\xi\mathcal{P}\), where \({\xi\sim \log(1/\varepsilon)}\), while the other component has one negative peak.  相似文献   

10.
Let \(\Omega \) be a bounded domain with smooth boundary in an n-dimensional metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and let \(\mathbf {u}=(u^1, \ldots , u^n)\) be a vector-valued function from \(\Omega \) to \(\mathbb {R}^n\). In this paper, we investigate the Dirichlet eigenvalue problem of a system of equations of the drifting Laplacian: \(\mathbb {L}_{\phi } \mathbf {u} + \alpha [ \nabla (\mathrm {div}\mathbf { u}) -\nabla \phi \mathrm {div} \mathbf {u}]= - \widetilde{\sigma } \mathbf {u}\), in \( \Omega \), and \(u|_{\partial \Omega }=0,\) where \(\mathbb {L}_{\phi } = \Delta - \nabla \phi \cdot \nabla \) is the drifting Laplacian and \(\alpha \) is a nonnegative constant. We establish some universal inequalities for lower order eigenvalues of this problem on the metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and the Gaussian shrinking soliton \((\mathbb {R}^n, \langle ,\rangle _{\mathrm {can}}, e^{-\frac{|x|^2}{4}}dv, \frac{1}{2})\). Moreover, we give an estimate for the upper bound of the second eigenvalue of this problem in terms of its first eigenvalue on the gradient product Ricci soliton \((\Sigma \times \mathbb {R}, \langle ,\rangle , e^{-\frac{\kappa t^2}{2}}dv, \kappa )\), where \( \Sigma \) is an Einstein manifold with constant Ricci curvature \(\kappa \).  相似文献   

11.
Let \(\mathcal {C}\subset \mathbb {Q}^p_+\) be a rational cone. An affine semigroup \(S\subset \mathcal {C}\) is a \(\mathcal {C}\)-semigroup whenever \((\mathcal {C}\setminus S)\cap \mathbb {N}^p\) has only a finite number of elements. In this work, we study the tree of \(\mathcal {C}\)-semigroups, give a method to generate it and study the \(\mathcal {C}\)-semigroups with minimal embedding dimension. We extend Wilf’s conjecture for numerical semigroups to \(\mathcal {C}\)-semigroups and give some families of \(\mathcal {C}\)-semigroups fulfilling the extended conjecture. Other conjectures formulated for numerical semigroups are also studied for \(\mathcal {C}\)-semigroups.  相似文献   

12.
This paper first shows that the Riemann localisation property holds for the Fourier-Laplace series partial sum for sufficiently smooth functions on the two-dimensional sphere, but does not hold for spheres of higher dimension. By Riemann localisation on the sphere \(\mathbb {S}^{d}\subset \mathbb {R}^{d+1}\), \(d\ge 2\), we mean that for a suitable subset X of \(\mathbb {L}_{p}(\mathbb {S}^{d})\), \(1\le p\le \infty \), the \(\mathbb {L}_{p}\)-norm of the Fourier local convolution of \(f\in X\) converges to zero as the degree goes to infinity. The Fourier local convolution of f at \(\mathbf {x}\in \mathbb {S}^{d}\) is the Fourier convolution with a modified version of f obtained by replacing values of f by zero on a neighbourhood of \(\mathbf {x}\). The failure of Riemann localisation for \(d>2\) can be overcome by considering a filtered version: we prove that for a sphere of any dimension and sufficiently smooth filter the corresponding local convolution always has the Riemann localisation property. Key tools are asymptotic estimates of the Fourier and filtered kernels.  相似文献   

13.
14.
Denoising has to do with estimating a signal \(\mathbf {x}_0\) from its noisy observations \(\mathbf {y}=\mathbf {x}_0+\mathbf {z}\). In this paper, we focus on the “structured denoising problem,” where the signal \(\mathbf {x}_0\) possesses a certain structure and \(\mathbf {z}\) has independent normally distributed entries with mean zero and variance \(\sigma ^2\). We employ a structure-inducing convex function \(f(\cdot )\) and solve \(\min _\mathbf {x}\{\frac{1}{2}\Vert \mathbf {y}-\mathbf {x}\Vert _2^2+\sigma {\lambda }f(\mathbf {x})\}\) to estimate \(\mathbf {x}_0\), for some \(\lambda >0\). Common choices for \(f(\cdot )\) include the \(\ell _1\) norm for sparse vectors, the \(\ell _1-\ell _2\) norm for block-sparse signals and the nuclear norm for low-rank matrices. The metric we use to evaluate the performance of an estimate \(\mathbf {x}^*\) is the normalized mean-squared error \(\text {NMSE}(\sigma )=\frac{{\mathbb {E}}\Vert \mathbf {x}^*-\mathbf {x}_0\Vert _2^2}{\sigma ^2}\). We show that NMSE is maximized as \(\sigma \rightarrow 0\) and we find the exact worst-case NMSE, which has a simple geometric interpretation: the mean-squared distance of a standard normal vector to the \({\lambda }\)-scaled subdifferential \({\lambda }\partial f(\mathbf {x}_0)\). When \({\lambda }\) is optimally tuned to minimize the worst-case NMSE, our results can be related to the constrained denoising problem \(\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-\mathbf {x}\Vert _2\}\). The paper also connects these results to the generalized LASSO problem, in which one solves \(\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-{\mathbf {A}}\mathbf {x}\Vert _2\}\) to estimate \(\mathbf {x}_0\) from noisy linear observations \(\mathbf {y}={\mathbf {A}}\mathbf {x}_0+\mathbf {z}\). We show that certain properties of the LASSO problem are closely related to the denoising problem. In particular, we characterize the normalized LASSO cost and show that it exhibits a “phase transition” as a function of number of observations. We also provide an order-optimal bound for the LASSO error in terms of the mean-squared distance. Our results are significant in two ways. First, we find a simple formula for the performance of a general convex estimator. Secondly, we establish a connection between the denoising and linear inverse problems.  相似文献   

15.
Let \({\mathcal{P} \subset \mathbb{R}^{d}}\) and \({\mathcal{Q} \subset \mathbb{R}^{e}}\) be integral convex polytopes of dimension d and e which contain the origin of \({\mathbb{R}^{d}}\) and \({\mathbb{R}^{e}}\), respectively. We say that an integral convex polytope \({\mathcal{P}\subset \mathbb{R}^{d}}\) possesses the integer decomposition property if, for each \({n\geq1}\) and for each \({\gamma \in n\mathcal{P}\cap\mathbb{Z}^{d}}\), there exist \({\gamma^{(1)}, . . . , \gamma^{(n)}}\) belonging to \({\mathcal{P}\cap\mathbb{Z}^{d}}\) such that \({\gamma = \gamma^{(1)} +. . .+\gamma^{(n)}}\). In the present paper, under some assumptions, the necessary and sufficient condition for the free sum of \({\mathcal{P}}\) and \({\mathcal{Q}}\) to possess the integer decomposition property will be presented.  相似文献   

16.
For each rank metric code \(\mathcal {C}\subseteq \mathbb {K}^{m\times n}\), we associate a translation structure, the kernel of which is shown to be invariant with respect to the equivalence on rank metric codes. When \(\mathcal {C}\) is \(\mathbb {K}\)-linear, we also propose and investigate other two invariants called its middle nucleus and right nucleus. When \(\mathbb {K}\) is a finite field \(\mathbb {F}_q\) and \(\mathcal {C}\) is a maximum rank distance code with minimum distance \(d<\min \{m,n\}\) or \(\gcd (m,n)=1\), the kernel of the associated translation structure is proved to be \(\mathbb {F}_q\). Furthermore, we also show that the middle nucleus of a linear maximum rank distance code over \(\mathbb {F}_q\) must be a finite field; its right nucleus also has to be a finite field under the condition \(\max \{d,m-d+2\} \geqslant \left\lfloor \frac{n}{2} \right\rfloor +1\). Let \(\mathcal {D}\) be the DHO-set associated with a bilinear dimensional dual hyperoval over \(\mathbb {F}_2\). The set \(\mathcal {D}\) gives rise to a linear rank metric code, and we show that its kernel and right nucleus are isomorphic to \(\mathbb {F}_2\). Also, its middle nucleus must be a finite field containing \(\mathbb {F}_q\). Moreover, we also consider the kernel and the nuclei of \(\mathcal {D}^k\) where k is a Knuth operation.  相似文献   

17.
Let \({\{\varphi_n(z)\}_{n\ge0}}\) be a sequence of inner functions satisfying that \({\zeta_n(z):=\varphi_n(z)/\varphi_{n+1}(z)\in H^\infty(z)}\) for every n ≥ 0 and \({\{\varphi_n(z)\}_{n\ge0}}\) have no nonconstant common inner divisors. Associated with it, we have a Rudin type invariant subspace \({\mathcal{M}}\) of \({H^2(\mathbb{D}^2)}\) . We write \({\mathcal{N}= H^2(\mathbb{D}^2)\ominus\mathcal{M}}\) . If \({\{\zeta_n(z)\}_{n\ge0}}\) ia a mutually prime sequence, then we shall prove that \({rank_{\{T^\ast_z,T^\ast_w\}} \mathcal{N}=1}\) and \({rank_{\{\mathcal{F}^\ast_z\}}(\mathcal{M}\ominus w\mathcal{M})=1}\) , where \({\mathcal{F}_z}\) is the fringe operator on \({\mathcal{M}\ominus w\mathcal{M}}\) .  相似文献   

18.
The main object of study in this paper is the double holomorphic Eisenstein series \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\) having two complex variables \(\mathbf{s}=(s_1,s_2)\) and two parameters \(\mathbf{z}= (z_1,z_2)\) which satisfies either \(\mathbf{z}\in (\mathfrak {H}^+)^2\) or \(\mathbf{z}\in (\mathfrak {H}^-)^2\), where \(\mathfrak {H}^{\pm }\) denotes the complex upper and lower half-planes, respectively. For \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\), its transformation properties and asymptotic aspects are studied when the distance \(|z_2-z_1|\) becomes both small and large under certain natural settings on the movement of \(\mathbf{z}\in (\mathfrak {H}^{\pm })^2\). Prior to the proofs our main results, a new parameter \(\eta \), which plays a pivotal role in describing our results, is introduced in connection with the difference \(z_2-z_1\). We then establish complete asymptotic expansions for \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\) when \(\mathbf{z}\) moves within the poly-sector either \((\mathfrak {H}^+)^2\) or \((\mathfrak {H}^-)^2\), so as to \(\eta \rightarrow 0\) through \(|\arg \eta |<\pi /2\) in the ascending order of \(\eta \) (Theorem 1). This further leads us to show that counterpart expansions exist for \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\) in the descending order of \(\eta \) as \(\eta \rightarrow \infty \) through \(|\arg \eta |<\pi /2\) (Theorem 2). Our second main formula in Theorem 2 yields a functional equation for \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\) (Corollaries 2.12.2), and also reduces naturally to various expressions of \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\) in closed forms for integer lattice point \(\mathbf{s}\in \mathbb {Z}^2\) (Corollaries 2.32.17). Most of these results reveal that the particular values of \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\) at \(\mathbf{s}\in \mathbb {Z}^2\) are closely linked to Weierstraß’ elliptic function, the classical Eisenstein series reformulated by Ramanujan, and the Jordan–Kronecker type functions, each associated with the bases \(2\pi (1, z_j)\), \(j=1,2\). The latter two functions were extensively utilized by Ramanujan in the course of developing his theories of Eisenstein series, elliptic functions, and theta functions. As for the methods used, crucial roles in the proofs are played by the Mellin–Barnes type integrals, manipulated with several properties of hypergeometric functions; the transference from Theorem 1 to Theorem 2 is, for instance, achieved by a connection formula for Kummer’s confluent hypergeometric functions.  相似文献   

19.
In Advances in Mathematical Physics (2011) we showed that the weighted shift \(z^{p}\frac{d^{p+1}}{dz^{p+1}} (p=0, 1, 2,\ldots )\) acting on classical Bargmann space \(\mathbb {B}_{p}\) is chaotic operator. In Journal of Mathematical physics (2014), we constructed an chaotic weighted shift \(\mathbb {M}^{*^{p}}\mathbb {M}^{p+1} (p=0, 1, 2,\ldots )\) on some lattice Fock–Bargmann \(\mathbb {E}_{p}^{\alpha }\) generated by the orthonormal basis \( {e_{m}^{(\alpha ,p)}(z) = e_{m}^{\alpha } ; m=p, p+1,\ldots }\) where \( {e_{m}^{\alpha }(z) = (\frac{2\nu }{\pi })^{1/4}e^{\frac{\nu }{2}z^{2}}e^{-\frac{\pi ^{2}}{\nu }(m +\alpha )^{2} +2i\pi (m +\alpha )z}; m \in \mathbb {N}}\) with \(\nu , \alpha \) are real numbers; \(\nu > 0\), \(\mathbb {M}\) is an weighted shift and \(\mathbb {M^{*}}\) is the adjoint of the \(\mathbb {M}\). In this paper we study the chaoticity of tensor product \(\mathbb {M}^{*^{p}}\mathbb {M}^{p+1}\otimes z^{p}\frac{d^{p}}{dz^{p+1}} (p=0, 1, 2, \ldots )\) acting on \(\mathbb {E}_{p}^{\alpha }\otimes \mathbb {B}_{p}\).  相似文献   

20.
In this paper, we study the equation \(\mathcal {L} u=0\) in \(\mathbb {R}^{N}\), where \(\mathcal {L}\) belongs to a general class of nonlocal linear operators which may be anisotropic and nonsymmetric. We classify distributional solutions of this equation, thereby extending and generalizing recent Liouville type theorems in the case where \(\mathcal {L}= (-{\Delta })^{s}\), s ∈ (0, 1) is the classical fractional Laplacian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号