共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of Au/Ni/4H–SiC Schottky junction thermal stability on performance of alpha particle detection 下载免费PDF全文
Au/Ni/n-type 4H–SiC Schottky alpha particle detectors are fabricated and annealed at temperatures between 400℃ and 700℃ to investigate the effects of thermal stability of the Schottky contact on the structural and electrical properties of the detectors. At the annealing temperature of 500?C, the two nickel silicides(i.e., Ni_(31)Si_(12) and Ni_2Si) are formed at the interface and result in the formation of an inhomogeneous Schottky barrier. By increasing the annealing temperature,the Ni_(31)Si_(12) transforms into the more stable Ni_2Si. The structural evolution of the Schottky contact directly affects the electrical properties and alpha particle energy resolutions of the detectors. A better energy resolution of 2.60% is obtained for 5.48-MeV alpha particles with the detector after being annealed at 600℃. As a result, the Au/Ni/n-type 4 H–SiC Schottky detector shows a good performance after thermal treatment at temperatures up to 700℃. 相似文献
2.
Numerical and experimental study of the mesa configuration in high-voltage 4H–SiC PiN rectifiers 下载免费PDF全文
The effect of the mesa configuration on the reverse breakdown characteristic of a SiC PiN rectifier for high-voltage applications is analyzed in this study.Three geometrical parameters,i.e.,mesa height,mesa angle and mesa bottom corner,are investigated by numerical simulation.The simulation results show that a deep mesa height,a small mesa angle and a smooth mesa bottom(without sub-trench) could contribute to a high breakdown voltage due to a smooth and uniform surface electric field distribution.Moreover,an optimized mesa structure without sub-trench(mesa height of 2.2 μm and mesa angle of 20°) is experimentally demonstrated.A maximum reverse blocking voltage of 4 kV and a forward voltage drop of 3.7 V at 100 A/cm~2 are obtained from the fabricated diode with a 30-μm thick N~- epi-layer,corresponding to 85% of the ideal parallel-plane value.The blocking characteristic as a function of the JTE dose is also discussed for the PiN rectifiers with and without interface charge. 相似文献
3.
Comparative study of electrical characteristics for n-type 4H–SiC planar and trench MOS capacitors annealed in ambient NO 下载免费PDF全文
The interface properties and electrical characteristics of the n-type 4H-SiC planar and trench metal–oxide–semiconductor(MOS) capacitors are investigated by measuring the capacitance voltage and current voltage. The flat-band voltage and interface state density are evaluated by the quasi-static method. It is not effective on further improving the interface properties annealing at 1250℃ in NO ambient for above 1 h due to the increasing interface shallow and fast states.These shallow states reduce the effective positive fixed charge density in the oxide. For the vertical MOS capacitors on the(1120) and(1100) faces, the interface state density can be reduced by approximately one order of magnitude, in comparison to the result of the planar MOS capacitors on the(0001) face under the same NO annealing condition. In addition, it is found that Fowler–Nordheim tunneling current occurs at an oxide electric field of 7 MV/cm for the planar MOS device.However, Poole–Frenkel conduction current occurs at a lower electric field of 4 MV/cm for the trench MOS capacitor. This is due to the local field crowded at the trench corner severely causing the electrons to be early captured at or emitted from the SiO_2/Si C interface. These results provide a reference for an in-depth understanding of the mobility-limiting factors and long term reliability of the trench and planar SiO_2/Si C interfaces. 相似文献
4.
Two-dimensional analysis of the interface states effects on current gain for 4H-SiC bipolar junction transistor 下载免费PDF全文
This paper studies two-dimensional analysis of the surface
state effect on current gain for a 4H--SiC bipolar junction
transistor (BJT). Simulation results indicate the mechanism of
current gain degradation, which is surface Fermi level pinning
leading to a strong downward bending of the energy bands to form the
channel of surface electron recombination current. The experimental
results are well-matched with the simulation, which is modeled by
exponential distributions of the interface state density replacing
the single interface state trap. Furthermore, the simulation reveals
that the oxide quality of the base emitter junction interface is very
important for 4H--SiC BJT performance. 相似文献
5.
Study and optimal simulation of 4H-SiC floating junction Schottky barrier diodes’ structures and electric properties 下载免费PDF全文
This paper stuides the structures of 4H-SiC floating junction Schottky barrier diodes. Some structure parameters of devices are optimized with commercial simulator based on forward and reverse electrical characteristics. Compared with conventional power Schottky barrier diodes, the devices are featured by highly doped drift region and embedded floating junction layers, which can ensure high breakdown voltage while keeping lower specific on-state resistance, and solve the contradiction between forward voltage drop and breakdown voltage. The simulation results show that with optimized structure parameter, the breakdown voltage can reach 4.36 kV and the specific on-resistance is 5.8 mΩ·cm2 when the Baliga figure of merit value of 13.1 GW/cm2 is achieved. 相似文献
6.
Annealing temperature influence on the degree of inhomogeneity of the Schottky barrier in Ti/4H–SiC contacts 下载免费PDF全文
Tung's model was used to analyze anomalies observed in Ti/Si C Schottky contacts. The degree of the inhomogeneous Schottky barrier after annealing at different temperatures is characterized by the ‘T0anomaly' and the difference(△Φ)between the uniformly high barrier height(Φ0B) and the effective barrier height(Φeff B). Those two parameters of Ti Schottky contacts on 4H–Si C were deduced from I–V measurements in the temperature range of 298 K–503 K. The increase in Schottky barrier(SB) height(ΦB) and decrease in the ideality factor(n) with an increase measurement temperature indicate the presence of an inhomogeneous SB. The degree of inhomogeneity of the Schottky barrier depends on the annealing temperature, and it is at its lowest for 500-°C thermal treatment. The degree of inhomogeneity of the SB could reveal effects of thermal treatments on Schottky contacts in other aspects. 相似文献
7.
Diodes are one of the most important and widely used components of electronic circuits. These devices can be damaged especially when they are used in radiation fields whose effects depend on radiation type and energy. To investigate these effects, the Au/n-GaAs type Schottky diodes have been irradiated by neutrons emitted from a 252Cf source which provides neutrons at an average energy of 2.14 MeV. The diode parameters barrier height (Φb0), ideality factor (n) and series resistance (Rs) have been obtained from forward current–voltage (I–V) characteristics before and after irradiation and the results are discussed. 相似文献
8.
9.
In this report we investigate structural and electrical properties of epitaxial Chemical Vapor Deposition quasi-free-standing graphene on an unintentionally-doped homoepitaxial layer grown on a conducting 4H–SiC substrate 4° off-axis from the basal [0001] direction towards [11-20]. Due to high density of SiC vicinal surfaces the deposited graphene is densely stepped and gains unique characteristics. Its morphology is studied with atomic force and scanning electron microscopy. Its few-layer character and p-type conductance are deduced from a Raman map and its layers structure determined from a high-resolution X-ray diffraction pattern. Transport properties of the graphene are estimated through Hall effect measurements between 100 and 350 K. The results reveal an unusually low sheet resistance below 100 Ω/sq and high hole concentration of the order of 1015 cm−2. We find that the material's electrical properties resemble those of an epitaxially-grown SiC PIN diode, making it an attractive platform for the semiconductor devices technology. 相似文献
10.
This study utilizes the Shockly equation and Fourier’s law with the optical, electrical and thermal properties of LEDs to predict the variation of the junction temperature with the injection current. It is shown that the relationship of the junction temperature with the injection current can be determined by the effective thermal conductivity, temperature coefficient of junction voltage, series resistance, integral constant (forward voltage at the initial forward current and junction temperature), ambient temperature and external quantum efficiency. The effective thermal conductivity, temperature coefficient of junction voltage, and series resistance are calculated from the material properties based on the structures of LEDs instead of measurements in this study. The junction temperature of AlGaInP/GaInP MQW red LED predicted from this study agrees with the available experimental data and the junction temperatures of GaInN UV LED and AlGaN UV LED calculated by this work are also consistent with these obtained from the emission peak shift method. The elevated temperatures of AlGaN and GaInN are larger than that of AlGaInP/GaInP MQW red LED due to the difference of the thermal conductivity for the LED substrate. This study also presents the effects of the parameters on the variation of the junction temperature with the injection current. The effective thermal conductivity and ambient temperature significantly affect the junction temperature of LEDs. 相似文献
11.
In this paper, we studied the enhancement of the breakdown voltage in the 4H–SiC MESFET–MOSFET (MES–MOSFET) structure which we have proposed in our previous work. We compared this structure with Conventional Bulk-MOSFET (CB-MOSFET) and Field plated Conventional Bulk-MOSFET (FCB-MOSFET) structures. The 4H–SiC MES–MOSFET structure consists of two additional schottky buried gates which behave like a Metal on Semiconductor (MES) at the interface of the active region and substrate. The motivation for this structure was to enhance the breakdown voltage by introducing a new technique of utilizing the reduced surface field (RESURF) concept. In our comparison and investigation we used a two-dimensional device simulator. Our simulation results show that the breakdown voltage of the proposed structure is 3.7 and 2.9 times larger than CB-MOSFET and FCB-MOSFET structures, respectively. We also showed that the threshold voltage and the slope of drain current (ID) as a function of drain–source voltage (VDS) for all the structures is the same. 相似文献
12.
Fabrication and characterization of 4H—SiC bipolar junction transistor with double base epilayer 下载免费PDF全文
In this paper we report on a novel structure of a 4H-SiC bipolar junction transistor with a double base epilayer that is continuously grown.The measured dc common-emitter current gain is 16.8 at IC = 28.6 mA(J C = 183.4 A/cm2),and it increases with the collector current density increasing.The specific on-state resistance(Rsp-on) is32.3mΩ·cm 2 and the open-base breakdown voltage reaches 410 V.The emitter N-type specific contact resistance and N + emitter layer sheet resistance are 1.7×10-3 Ω·cm2 and 150 /,respectively. 相似文献
13.
Cross-sectional TEM analysis of laser-induced ripple structures on the 4H–SiC single-crystal surface
T. Okada H. Kawahara Y. Ishida R. Kumai T. Tomita S. Matsuo S. Hashimoto M. Kawamoto Y. Makita M. Yamaguchi 《Applied Physics A: Materials Science & Processing》2008,92(3):665-668
The microstructures of femtosecond laser-induced ripples formed on a 4H–SiC single-crystal surface were studied by cross-sectional
transmission electron microscopy (TEM), with particular attention on the crystal structure underlying fine and coarse ripples
differing in period and morphology. Conventional and high-resolution TEM analyses showed that a continuous amorphous layer
approximately 10 to 50 nm thick covers the topmost region of both fine and coarse ripples. These results strongly suggest
that the fundamental surface deformation process is common for the entire region of fine and coarse ripples, even though the
factors that determine their periods are different. 相似文献
14.
The ideality factor n and the barrier height Φap of the sputtered Ni/p-InP Schottky diodes have been calculated from their experimental Current–voltage (I–V) characteristics in the temperature range of 60–400 K with steps of 10 K. The n and Φap values for the device have been obtained as 1.27 and 0.87 eV at 300 K and 1.13 and 0.91 eV at 400 K, respectively. The n values larger than unity at high temperatures indicate the presence of a thin native oxide layer at the semiconductor/metal interface. The barrier height (BH) has been assumed to be bias dependent due to the presence of an interfacial layer and interface states located at the interfacial layer-semiconductor interface. Interfacial layer-thermionic emission current mechanism has been fitted to experimental I–V data by considering the bias-dependence of the BH at each temperature. The best fitting values of the series resistance Rs and interface state density Ns together with the bias-dependence of the BH have been used at each temperature, and the Rs and Ns versus temperature plots have been drawn. It has been seen that the experimental and theoretical forward bias I–V data are in excellent agreement with each other in the temperature range of 60–400 K. It has been seen that the Rs and Ns values increase with a decrease in temperature, confirming the results in the literature. 相似文献
15.
16.
M. Suproniuk P. Kamiński R. Kozłowski M. Pawłowski M. Wierzbowski 《Opto-Electronics Review》2017,25(3):171-180
In this paper we present the current status of modelling the time evolution of the transient conductivity of photoexcited semi-insulating (SI) 4H–SiC taking into account the properties of defect centres. A comprehensive model that includes the presence of six, the most significant, point defects occurring in SI 4H–SiC crystals is presented. The defect centres are attributed to the two kinds of nitrogen-related shallow donors, a boron-related shallow acceptor, deep electron and hole traps, and the Z1/2 recombination centre. We present the results of the state-of-the-art numerical simulations showing how the photoconductivity transients change in time and how these changes are affected by the properties of defect centres. The properties of defect centres assumed for modelling are compared with the results of experimental studies of deep-level defects in high purity (HP) SI 4H–SiC wafers performed by the high-resolution photoinduced transient spectroscopy (HRPITS). The simulated photoconductivity transients are also compared with the experimental photocurrent transients for the HP SI 4H–SiC wafers with different deep-level defects. It is shown that a high-temperature annealing producing the C-rich material enables the fast photocurrent transients to be achieved. The presented analysis can be useful for technology of SI 4H–SiC high-power photoconductive switches with suitable characteristics. 相似文献
17.
Si C monocrystal substrates are implanted by Pd ions with different ion-beam energies and fluences,and the effects of Pd ion implantation on wettability of Si/Si C and Al–12 Si/Si C systems are investigated by the sessile drop technique.The decreases of contact angles of the two systems are disclosed after the ion implantation,which can be attributed to the increase of surface energy(σ_(SV)) of Si C substrate derived from high concentration of defects induced by the ionimplantation and to the decrease of solid–liquid surface energy(σ_(SL)) resulting from the increasing interfacial interactions.This study can provide guidance in improving the wettability of metals on Si C and the electronic packaging process of Si C substrate. 相似文献
18.
An improved 4H–SiC power MESFET with double source field plates (DSFP) for high-power applications is proposed (DSFP-MESFET). The DSFP structure significantly modifies the electric field in the drift layer. The influence of the DSFP structure on saturation current, breakdown voltage (Vb), and small-signal characteristics of the DSFP-MESFET were studied by numerical device simulation. The Vb of 359 V is obtained for the DSFP-MESFET compared to 301 V of the conventional source field plate MESFET (LSFP-MESFET). Hence, the maximum output power density of 24.7 and 21.8 W/mm are achieved for the DSFP-MESFET and LSFP-MESFET, respectively, which means 13% improvement for the proposed device. Also, the cut-off frequency (fT) of 24.5 and the maximum oscillation frequency (fmax) of 89.1 GHz for the 4H–SiC DSFP-MESFET are obtained compared to 23.1 and 85.3 GHz for that of the LSFP-MESFET structure, respectively. The DSFP-MESFET shows a superior maximum stable gain (MSG) exceeding 23.3 dB at 3.1 GHz, which is presenting the potential of the proposed device for high-power operations. 相似文献
19.
We report the observation of spectral broadening induced by 200 femtosecond laser pulses with the repetition rate of 1 kHz at the wavelength of 532 nm in semi-insulating 4H–SiC single crystals.It is demonstrated that the full width at half maximum of output spectrum increases linearly with the light propagation length and the peak power density,reaching a maximum 870 cm~(-1)on a crystal of 19 mm long under an incident laser with a peak power density of 60.1 GW/cm~2.Such spectral broadening can be well explained by the self-phase modulation model which correlates time-dependent phase change of pulses to intensity-dependent refractive index.The nonlinear refractive index n_2 is estimated to be1.88×10~(-15)cm~2/W.The intensity-dependent refractive index is probably due to both the nonlinear optical polarizability of the bound electrons and the increase of free electrons induced by the two-photon absorption process.Super continuum spectra could arise as crystals are long enough to induce the self-focusing effect.The results show that SiC crystals may find applications in spectral broadening of high power lasers. 相似文献
20.
Eita Tochigi Hirofumi Matsuhata Hirotaka Yamaguchi Takashi Sekiguchi Hajime Okumura Yuichi Ikuhara 《哲学杂志》2013,93(9):657-670
AbstractWe investigated two types of V-shaped extended defects on the basal plane in epitaxial 4H-SiC by synchrotron X-ray topography, photoluminescence imaging/spectroscopy and transmission electron microscopy (TEM). One is the (2, 5) stacking fault (in Zhdanov notation) bounded by two partial dislocations with the Burgers vector b ± 1/4[0?0?0?1]; the other is the (2, 3, 3, 5) stacking fault bounded by partial dislocations with b = ±1/4[0?0?0?1]. The core of the partial dislocations associated with the (2, 3, 3, 5) fault has an out-of-plane component (Frank component) and three in-plane components (Shockley components); the three Shockley components are cancelled out in total. The electronic structures of the (2, 5) and (2, 3, 3, 5) stacking faults were further examined by photoluminescence spectroscopy and first-principles calculations. It is suggested that the (2, 5) and (2, 3, 3, 5) stacking faults both have an interband state at a similar energy level, although they differ structurally. 相似文献