首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[(C6H5CH2C5H4)2GdCl.THF]2 (1) and (C6H5CH2C5H4)2ErCl.THF (2) were prepared by the reaction of LnCl3 (Ln? Gd, Er) with benzylcyclopentadienyl sodium in THF and characterized by elemental analysis, IR, 1H NMR, 13C NMR, MS and thermal gravimetry. The crystal structures of both compounds were determined. Complex 1 is dimeric and its structure belongs to the monoclinic, P21/c space group with a=1.1432(2), b=1.2978(2), c=1.7604(3) nm, β=108.75(2), V=2.4732(9) nm3, Z=2(four monomers), Dc“1.54 g.cm?3. R=0.0342 and Rw“0.0362. Complex 2 is monomer and its structure belongs to the orthorhombic, P212121 space group with a=0.8645(2), b=1.1394(3), c=2.5289(4) nm, V=2.4919(9) nm3, Z=4, Dc“1.56 g.cm?3. R=0.0514, Rw“0.0529. The determination of the crystal structure shows that in complex 1 the benzyl groups on the cyclopentadienyls coordinated to Gd3+ are located in the opposite direction (139°); in complex 2 the benzyl groups on the cyclopentadienyls coordinated to Er3+ are located in the same direction (6.5°).  相似文献   

2.
Conclusions The parameters of the Arrhenius equation for the isomerization of PhC(SPh)2H2 radicals to Ph(SPh)CH2. SPh radicals are in agreement with an intramolecular character of the rearrangement, with a 1,2-migration of the thiyl group. These parameters were calculated on the basis of the data that were obtained by the EPR method in the range 10–70°.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2596–2597, November, 1982.  相似文献   

3.
4.
New Benzyl Complexes of the Lanthanides. Synthesis and Crystal Structures of [(C5Me5)2Y(CH2C6H5)(thf)], [(C5Me5)2Sm(CH2C6H5)2K(thf)2], and [(C5Me5)Gd(CH2C6H5)2(thf)] YBr3 reacts with potassium benzyl and [K(C5Me5)] in THF to give KBr and the monobenzyl compound [(C5Me5)2 · Y(CH2C6H5)(thf)] 1 . The analogous reaction with SmBr3 in THF leads to the polymeric product [(C5Me5)2Sm(CH2C6H5)2 ∞ K(thf)2] 2 , with GdBr3 to [(C5Me5)Gd(CH2C6H5)2(thf)] 3 . The structures of 1–3 were determined by X-ray single crystal structure analysis:
  • Space group P1 , Z = 2, a = 851.2(4) pm, b = 952.7(4) pm, c = 1858.6(8) pm, α = 79.90(4)°, β = 77.35(4)°, γ = 73.30(3)°.
  • Space group P1 , Z = 2, a = 903.3(2) pm, b = 1375.9(3) pm, c = 1801.1(4) pm, α = 100.92(3)°, β = 100.77°, γ = 98.25(3)°.
  • Space group P21/n, Z = 8, a = 1458.2(5) pm, b = 927.8(3) pm, c = 3792.9(15) pm, β = 96.83(3)°.
  相似文献   

5.
6.
7.
8.
Conclusions Quantitative data were obtained as the result of studying the kinetics of isotopic hydrogen exchange in aci medium in the-C6H5CH2Mo(CO)3C5H5- and-C6H5CH2W(CO)3C5H5- complexes, which characterize the CH2M(CO)3C5H5- substituents as being powerful electron donors.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1652–1654, July, 1973.  相似文献   

9.
Oxidation of the cyclohexadienyl complex Fe(η5-C5H5)(1-5-75-6-exo-C5H5-C6H6) (2) by (Ph3C)PF6 (CH2Cl2, from −30 to +20 °C) occurs as two concurrent processes: elimination of an H atom from the cyclohexadienyl ligand and replacement of an H atom in the cyclopentadienyl ring by a CPh3 fragment. A mixture of cationic complexes [Fe(η5-C5H5) (η6-Ph-C5H5]+ (1+) and [Fe(η5-C5H4CPh3) (η6-Ph-C5H5]+ (4+) (4 +) with PF6 anions is obtained. Deprotonation of the mixture of 1+ and 4+ complexes under the action of Bu t OK inm-xylene followed by boiling of the reaction mixture gives phenylferrocene (7) as the product of η66 haptotropic rearrangement. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, NO. 5, pp. 1045–1047, May, 1997.  相似文献   

10.
To date only one product, biphenyl, has been reported to be produced from C(6)H(5) + C(6)H(6)/C(6)H(5) reactions. In this study, we have investigated some unique products of C(6)H(5) + C(6)H(6)/C(6)H(5) reactions via both experimental observation and theoretical modeling. In the experimental study, gas-phase reaction products produced from the pyrolysis of selected aromatics and aromatic/acetylene mixtures were detected by an in situ technique, vacuum ultraviolet (VUV) single photon ionization (SPI) time-of-flight mass spectrometry (TOFMS). The mass spectra revealed a remarkable correlation in mass peaks at m/z = 154 {C(12)H(10) (biphenyl)} and m/z = 152 {C(12)H(8) (?)}. It also demonstrated an unexpected correlation among the HACA (hydrogen abstraction and acetylene addition) products at m/z = 78, 102, 128, 152, and 176. The analysis of formation routes of products suggested the contribution of some other isomers in addition to a well-known candidate, acenaphthylene, in the mass peak at m/z = 152 (C(12)H(8)). Considering the difficulties of identifying the contributing isomers from an observed mass number peak, quantum chemical calculations for the above-mentioned reactions were performed. As a result, cyclopenta[a]indene, as-indacene, s-indacene, biphenylene, acenaphthylene, and naphthalene appeared as novel products, produced from the possible channels of C(6)H(5) + C(6)H(6)/C(6)H(5) reactions rather than from their previously reported formation pathways. The most notable point is the production of acenaphthylene and naphthalene from C(6)H(5) + C(6)H(6)/C(6)H(5) reactions via the PAC (phenyl addition-cyclization) mechanism because, until now, both of them have been thought to be formed via the HACA routes. In this way, this study has paved the way for exploring alternative paths for other inefficient HACA routes using the PAC mechanism.  相似文献   

11.
The effect of a local environment on the photodissociation of molecular oxygen is investigated in the van der Waals complex X-O(2) (X=CH(3)I, C(3)H(6), C(6)H(12), and Xe). A single laser operating at wavelengths around 226 nm is used for both photodissociation of the van der Waals complex and simultaneous detection of the O((3)P(J),J=2,1,0) atom photoproduct via (2+1) resonance enhanced multiphoton ionization. The kinetic energy distribution (KED) and angular anisotropy of the product O atom recoil in this dissociation are measured using the velocity map imaging technique configured for either full ("crush") or partial ("slice") detection of the three-dimensional O((3)P(J)) atom product Newton sphere. The measured KED and angular anisotropy reveal a distinct difference in the mechanism of O atom generation from an X-O(2) complex compared to a free O(2) molecule. The authors identify two one-photon excitation pathways, the relative importance of which depends on IPx, the ionization potential of the X partner. One pathway, observed for all complexes independent of IPx, involves a direct transition to the perturbed covalent state X-O(2)(A'(3)Delta(u)) with excitation localized on the O(2) subunit. The predominantly perpendicular character of this channel relative to the laser polarization detection, together with data on the structure of the complex, allows us to confirm that X partner induced admixing of an X(+)-O(2) (-) charge transfer (CT) state is the perturbing factor resulting in the well-known enhancement of photoabsorption within the Herzberg continuum of molecular oxygen. The second excitation pathway, observed for X-O(2) complexes with X=CH(3)I and C(3)H(6), involves direct excitation into the (3)(X(+)-O(2) (-)) CT state of the complex. The subsequent photodissociation of this CT state by the same laser pulse gives rise to the superoxide anion O(2) (-), which then photodissociates, providing fast (0.69 eV) O atoms with a parallel image pattern. Products from the photodissociation of singlet oxygen O(2)(b (1)Sigma(g) (+)) are also observed when the CH(3)I-O(2) complex was irradiated. Potential energy surfaces (PES) for the ground and relevant excited states of the X-O(2) complex have been constructed for CH(3)I-O(2) using the results of CASSCF calculations for the ground and CT states of the complex as well as literature data on PES of the subunits. These model potential energy surfaces allowed us to interpret all of the observed O((3)P(J)) atom production channels.  相似文献   

12.
Synthetic methods for several novel phosphoramidate compounds containing the P(O)NHC(O) bifunctional group were developed. These compounds with the general formula R1C(O)NHP(O)(N(R2)(CH2C6H5))2, where R1 = CCl2H, p-ClC6H4, p-BrC6H4, o-FC6H4 and R2 = hydrogen, methyl, benzyl, were characterized by several spectroscopic methods and analytical techniques. The effects of phosphorus substituents on the rotation rate around the P–Namine bond were also investigated. 1H NMR study of the synthesized compounds demonstrated that the presence of bulky groups attached to the phosphorus center and electron withdrawing groups in the amide moiety lead to large chemical-shift non-equivalence (ΔδH) of diastereotopic methylene protons. The crystal structures of CCl2HC(O)NHP(O)(NCH3(CH2C6H5))2, p-ClC6H4C(O)NHP(O)(NCH3(CH2C6H5))2, CCl2HC(O)NHP(O)(N(CH2C6H5)2)2 and p-BrC6H4C(O)NHP(O)(N(CH2C6H5)2)2 were determined by X-ray crystallography using single crystals. The coordination around the phosphorus center in these compounds is best described as distorted tetrahedral and the P(O) and C(O) groups are anti with respect to each other. In the compound Br-C6H4C(O)NHP(O)(N(CH2C6H5)2)2 (with two independent molecules in the unit cell), two conformers are connected to each other via two different N–H?O hydrogen bonds forming a non-centrosymmetric dimer. In the crystalline lattice of other compounds, the molecules form centrosymmetric dimers via pairs of same N–H?O hydrogen bonds. The structure of CCl2HC(O)NHP(O)(N(CH2C6H5)2)2 reveals an unusual intramolecular interaction between the oxygen of CO group and amine nitrogen.  相似文献   

13.
14.
15.
The C8H9+-ion, formed from the molecular ions of 2-phenyl-1-bromoethane, 1-phenyl-1-bromoethane and of 1-phenyl-1-nitroethane by loss of the bromine atom and of the nitro group, splits off a molecule of acetylene after an almost complete randomization of hydrogens, as proved by deuteration. An eight-membered ring structure for the C8H9+-ion is proposed to explain these results. By loss of the nitro group from the molecular ions of 1-phenyl-1-nitropropane and of 1-phenyl-2-nitropropane the well-known phenylated cyclopropane ion3 (C9H11)+ is generated. Mass spectra of analogues, specifically deuterated in the side-chain, show that in this ion a randomization of hydrogen atoms in the cyclopropane ring as well as a hydride transfer from the cyclopropane ring to the phenyl cation occur.  相似文献   

16.
17.
The mixed‐amide phosphinates, rac‐phenyl (N‐methylcyclohexylamido)(p‐tolylamido)phosphinate, C20H27N2O2P, (I), and rac‐phenyl (allylamido)(p‐tolylamido)phosphinate, C16H19N2O2P, (II), were synthesized from the racemic phosphorus–chlorine compound (R,S)‐(Cl)P(O)(OC6H5)(NHC6H4p‐CH3). Furthermore, the phosphorus–chlorine compound ClP(O)(OC6H5)(NH‐cyclo‐C6H11) was synthesized for the first time and used for the synthesis of rac‐phenyl (benzylamido)(cyclohexylamido)phosphinate, C19H25N2O2P, (III). The strategies for the synthesis of racemic mixed‐amide phosphinates are discussed. The P atom in each compound is in a distorted tetrahedral (N1)P(=O)(O)(N2) environment. In (I) and (II), the p‐tolylamido substituent makes a longer P—N bond than those involving the N‐methylcyclohexylamido and allylamido substituents. In (III), the differences between the P—N bond lengths involving the cyclohexylamido and benzylamido substituents are not significant. In all three structures, the phosphoryl O atom takes part with the N—H unit in hydrogen‐bonding interactions, viz. an N—H...O=P hydrogen bond for (I) and (N—H)(N—H)...O=P hydrogen bonds for (II) and (III), building linear arrangements along [001] for (I) and along [010] for (III), and a ladder arrangement along [100] for (II).  相似文献   

18.
19.
Ph2P-PF2Ph2 has been identified by means 19F- and 31P- NMR spectroscopy as an intermediate product of the disproportionation of Ph2PF. The disproportionation is catalyzed by acids. The reaction mechanism is discussed. PhPF2 disproportionates faster in solution in acetonitrile than neat, forming (PhP)6, instead of (PhP)5.  相似文献   

20.
Dicarbon (C2), the simplest bare carbon molecule, is ubiquitous in the interstellar medium and in combustion flames. A gas‐phase synthesis is presented of the benzyl radical (C6H5CH2) by the crossed molecular beam reaction of dicarbon, C2(X1Σg+, a3Πu), with 2‐methyl‐1,3‐butadiene (isoprene; C5H8; X1A′) accessing the triplet and singlet C7H8 potential energy surfaces (PESs) under single collision conditions. The experimental data combined with ab initio and statistical calculations reveal the underlying reaction mechanism and chemical dynamics. On the singlet and triplet surfaces, the reactions involve indirect scattering dynamics and are initiated by the barrierless addition of dicarbon to the carbon–carbon double bond of the 2‐methyl‐1,3‐butadiene molecule. These initial addition complexes rearrange via multiple isomerization steps, leading eventually to the formation of C7H7 radical species through atomic hydrogen elimination. The benzyl radical (C6H5CH2), the thermodynamically most stable C7H7 isomer, is determined as the major product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号