共查询到16条相似文献,搜索用时 78 毫秒
1.
针对电子装备的故障信息不足,故障发生率高等特点,通过故障预测有效的监测设备故障状态以及发展趋势,实现对设备的事先维修,避免重大事故的发生,提高电子设备的安全性。对电子装备故障预测进行了分析,提出了一种基于最小二乘支持向量机(LSSVM)的故障预测方法。首先介绍了LSSVM故障预测算法的基本原理和预测流程;然后,对整个电子装备的故障预测研究可以从一个类似的模拟带通滤波器电路故障预测研究出发,将该元件容差设为不同范围来定义电路的不同故障状态,将LSSVM方法与最小二乘法、支持向量机法对电路的不同状态进行预测,可以得到不同状态的预测值,研究结果表明提出的方法能够实现模拟电路的缓变故障预测,且预测效果较好。 相似文献
2.
针对飞机发动机异常状态识别精度差、效率低和易误诊漏诊等问题,提出了一种基于动态主元分析 (Dynamic Principal Component Analysis, DPCA)和最小二乘支持向量机(Least Square Support Vector Machine, LSSVM)的飞机发动机润滑系统异常状态识别方法。首先对发动机润滑系统参数进行DPCA处理以及在线检测是否有故障发生,如果有故障发生,再采用LSSVM方法进行异常状态识别。以某型飞机发动机润滑系统为例,对文中所提方法的准确性进行试验验证,由试验结果得出文中方法能有效提高飞机发动机异常状态识别准确率。 相似文献
3.
由于混沌系统存在非线性、不确定性等特点, 常规的控制方法难以获得满意的结果. 提出一种基于PSO优化LSSVM模型参数的混沌系统控制方法. 该方法利用PSO算法的收敛速度快和全局收敛能力, 优化LSSVM模型的惩罚因子和核函数参数, 避免了人为选择参数的盲目性, 提高了LSSVM模型的预测精度. 另外, 该方法不需要被控混沌系统的解析模型, 且当测量噪声存在情况下控制仍然有效. 仿真实验结果表明了该方法的有效性和可行性.
关键词:
混沌系统控制
粒子群算法
最小二乘支持向量机 相似文献
4.
针对氧化还原电位对于生物氧化提金预处理过程的控制和优化具有重要作用,提出了一种基于改进的ABC算法优化最小二乘支持向量机的预测方法。该算法是在标准人工蜂群算法的基础上,通过引入欧氏距离,使得在一定邻域内观察蜂采用不同于雇佣蜂的搜索策略。采用改进的ABC算法优化最小二乘支持向量机的参数,取得最优解并赋予最小二乘支持向量机进行预测。以新疆某金矿的生产数据进行仿真研究,结果表明:基于改进的ABC算法优化的最小二乘支持向量机具有较高的预测精度,该方法能使模型取得较好的预测效果。 相似文献
5.
本文分析了网络流量数据的特性,针对传统预测算法在预测网络流量时的缺陷提出了一种基于相关分析的相关局域最小二乘支持向量机(LSSVM)预测算法.算法在对训练数据重构相空间后,利用相关分析同时从距离相关和时间相关的训练样本中选择最优的训练子集,结合自适应参数优化的LSSVM预测模型对小尺度网络流量进行预测.通过选用实际情况下的网络流量数据对算法进行测试验证,结果显示本文所提算法不仅优于传统的全局预测算法,同时也优于各种改进的局域预测算法.算法不仅在预测精度上取得大幅的性能提升,同时能够通过留一交叉验证法在预测之前就完成预测模型和训练子集的优化. 相似文献
6.
为实现远区核爆电磁脉冲(NEMP)和闪电电磁脉冲(LEMP)的有效识别,提出一种基于希尔伯特黄变换(HHT)和最小二乘支持向量机(LSSVM)的识别算法。采用希尔伯特黄变换对远区NEMP和LEMP进行分析,利用两种信号的Hilbert谱在不同频带上分布的差异性,选择谱图中两个区域的能量占比作为信号的特征,选择LSSVM作为分类器进行分类识别。实验结果表明,采用能量占比特征可有效识别NEMP和LEMP,且综合识别率可达到98.59%。 相似文献
7.
针对混沌时间序列的预测问题,考虑到单一核函数的最小二乘支持向量机无法明显提高预测精度,提出了一种组合核函数的最小二乘支持向量机预测模型,模型中采用多项式函数与径向基函数组合构建核函数.同时,还对遗传算法进行了改进,使之具有更快的收敛速度和更高的精度,改进的遗传算法适用于解决预测模型中的参数优化问题.通过典型的Lorenz时间序列、Mackey-Glass时间序列、太阳黑子数时间序列以及具有混沌特性的网络流量时间序列对该模型进行了验证.仿真结果表明所提出的模型是有效的. 相似文献
8.
高炉煤气是钢铁企业重要的二次能源,其产生量和消耗量的实时准确预测对高炉煤气系统的平衡调度具有重要作用。但由于高炉煤气系统工况多变、产消量数据波动较大,给高炉煤气产消量的准确预测带来了很大的挑战。为此,通过对煤气产消量数据特征的深入分析,提出了一种基于自适应遗忘因子极限学习机(AF-ELM)的在线预测算法。在序贯极限学习机的基础上,引入遗忘因子逐步遗忘旧样本,通过预测误差反馈机制,自适应的调节遗忘因子,从而提高预测方法对系统工况的动态变化的适应能力,提高预测精度。将该算法应用于钢铁企业的高炉煤气产消量在线预测,实验结果表明与序贯极限学习机相比,该预测方法在系统工况变化的情况下能保持较高的预测精度,更适合于高炉煤气产消量的在线预测。 相似文献
9.
针对目前已有的基于RFID的身份识别系统,往往仅从系统角度来设计系统,没有和计算机视觉技术结合,从而无法进一步提高安全性能。为了解决此问题,文中设计了一种基于LSSVM(Least Square Support Vector Machine, LSSVM)和RFID(Radio Frequency Identification, RFID)的智能门禁身份认证系统。首先,设计了系统总体框架并描述了身份认证原理。然后,对系统的RFID子系统,微处理器和接口均进行了详细设计和描述,在此基础上,将计算机视觉技术加入到识别过程中,采用多层RBM组成的深度神经网络对人脸进行自动特征提取,通过比较差异算法训练深度神经网络,最后,根据RFID标签和提出的人脸特征,采用多个LSSVM进行人脸识别,并将投票结果作为最终识别结果。通过部署实验进行测试,结果证明文中设计的系统能实时有效地对智能门禁进行身份认证,与其它方法相比,具有识别率高和识别效率高的优点,具有较大的优越性。 相似文献
10.
本文分析了传统支持向量机预测算法产生的误差特性,发现产生的预测误差不同于噪声,具有较强的规律性,单一的预测模型遗漏了许多混沌序列中的确定性分量.经过误差补偿后,残差的冗余信息减少,随机性增强.在此基础上,本文提出一种基于迭代误差补偿的最小二乘支持向量机预测算法,能够通过多模型联合预测更加有效地逼近混沌系统的映射函数,在预测精度上取得了大幅度的提升.此外,算法通过留一交叉验证法的方法能够在预测前自动优化模型参数组合,克服了现有算法无法仅利用先验信息优化预测模型参数的缺陷.对MackeyGlass和Lorenz混沌时间序列进行了仿真实验,实验结果优于相关文献记载方法的预测性能,在性能指标上好于现有算法一个数量级. 相似文献
11.
提出了多核最小二乘支持向量机的永磁同步电机混沌系统建模方法. 通过不同核函数的线性加权组合构造新的等价核,降低建模精度对核函数及其参数选择的依赖性. 理论上给出多核最小二乘支持向量机回归参数和模型输出值的求解方法. 采用关联积分计算方法对永磁同步电机混沌系统进行相空间重构,以窗式移动的在线学习方式对重构后的永磁同步电机混沌序列进行一步和多步实时在线预测,并讨论了不同测量噪声对该方法的影响. 仿真结果表明,该方法能有效提高永磁同步电机混沌系统的建模精度,具有良好的抗噪能力. 相似文献
12.
提出了多核最小二乘支持向量机的永磁同步电机混沌系统建模方法. 通过不同核函数的线性加权组合构造新的等价核,降低建模精度对核函数及其参数选择的依赖性. 理论上给出多核最小二乘支持向量机回归参数和模型输出值的求解方法. 采用关联积分计算方法对永磁同步电机混沌系统进行相空间重构,以窗式移动的在线学习方式对重构后的永磁同步电机混沌序列进行一步和多步实时在线预测,并讨论了不同测量噪声对该方法的影响. 仿真结果表明,该方法能有效提高永磁同步电机混沌系统的建模精度,具有良好的抗噪能力.
关键词:
永磁同步电机
多核学习
最小二乘支持向量机
混沌预测 相似文献
13.
Small-time scale network traffic prediction based on a local support vector machine regression model 总被引:2,自引:0,他引:2 下载免费PDF全文
In this paper we apply the nonlinear time series analysis method to
small-time scale traffic measurement data. The prediction-based
method is used to determine the embedding dimension of the traffic
data. Based on the reconstructed phase space, the local support
vector machine prediction method is used to predict the traffic
measurement data, and the BIC-based neighbouring point selection
method is used to choose the number of the nearest neighbouring
points for the local support vector machine regression model. The
experimental results show that the local support vector machine
prediction method whose neighbouring points are optimized can
effectively predict the small-time scale traffic measurement data
and can reproduce the statistical features of real traffic
measurements. 相似文献
14.
为了实现对黄瓜病害的快速无损准确预测,基于激光诱导叶绿素荧光光谱分析技术,建立了温室黄瓜霜霉病害的预测模型.通过测定健康叶片、病菌接种3d叶片和接种6d叶片的光谱曲线,采用一阶导数光谱预处理方法,结合主成分分析数据降维方法对三组光谱数据进行特征信息提取后,建立主成分得分散点图,依据累积贡献率选取10个主成分代替导数光谱... 相似文献
15.
针对轴承振动信号具有的非平稳和故障诊断样本数据难以按需获取的问题,设计了一种基于小波包分解和EMD-SVM的故障诊断方法。首先,采用Mallat塔式算法对信号进行降噪,实现信号的小波分解,获得重构后的故障诊断子频带信号。然后,在经典的EMD算法的基础上定义了改进的EMD算法,采用改进的EMD算法对经过小波包降噪的故障诊断子频带信号进行特征提取,从而获得故障诊断特征向量。最后,采用适合小样本分类的SVM进行故障诊断,将经过小波包降噪和EMD特征提取的样本数据用于训练SVM,得到用于故障诊断的多个二分类SVM故障诊断模型,通过投票机制来确定样本数据最终对应的故障诊断类别。在Matlab环境下对轴承故障诊断进行实验,实验结果证明了文中基于小波包和EMD-SVM的方法一种适用于小样本的故障诊断方法,且与其它方法相比,具有诊断效率高和精度高的优点。 相似文献
16.
连续小波变换高光谱数据的土壤有机质含量反演模型构建 总被引:9,自引:0,他引:9
土壤有机质含量是反映土壤肥力的重要指标,对其进行动态监测是实施精准农业的重要措施。近年来,众多学者尝试采用土壤近地传感(proximal soil sensing),尤其是近地高光谱技术,在田间和实验室获取不同形态土壤的高光谱数据,不断引入新方法建立适用于不同地域和不同土壤类型的有机质含量的反演模型。该研究在实验室内利用ASD FS3采集了土壤高光谱数据,采用“重铬酸钾-外加热法”测得了土壤有机质含量;分析了土壤原始光谱反射率(R)与有机质含量的相关性,选取R2>0.15的敏感波段的反射率;利用CWT对土壤原始光谱反射率(R)、光谱反射率的连续统去除(CR)进行不同尺度的分解,分析小波系数与土壤有机质含量的相关性,选取R2>0.3的敏感波段的小波系数;利用R选取的波段信息和R-CWT,CR-CWT的选取的小波系数,分别建立偏最小二乘回归(PLSR)、BP神经网络(BPNN)、支持向量机回归(SVMR)三种不同的土壤有机质含量反演模型。结果表明:相比R与土壤有机质含量的决定系数R2,R-CWT,CR-CWT变换后得到的小波系数与土壤有机质含量的决定系数R2分别提高了0.15和0.2左右;CR-CWT-SVMR的模型效果最为显著,预测集的R2和RMSE分别为0.83,4.02,RPD值为2.48,具有较高的估测精度,能够全面稳定地估算土壤有机质含量;CR-CWT-PLSR的模型精度与CR-CWT-BPNN,CR-CWT-SVMR相比虽有一定差距,但是其计算量要明显小于非线性的BPNN和SVMR方法,具有模型简单、运算速度快等特点,对开发与设计田间传感器具有较大的应用价值。 相似文献