首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
与铝合金等材料相比,纤维编织材料具有质量轻、可柔性折叠等优点,可应用于柔性充气展开防护结构,进而构建多屏、大间距防护结构,提升防护效率。考虑不同性能纤维编织材料对多屏防护结构防护性能的影响,通过实验研究了不同材料制成的多屏防护结构对空间碎片的防护性能,防护屏材料包括玄武岩纤维编织材料、芳纶纤维编织材料及铝板。在超高速弹丸撞击载荷作用下,与多屏铝板防护结构相比,多屏纤维编织材料防护结构具有更高的防碎片撞击效果;对多屏纤维编织材料防护结构来说,前两屏采用玄武岩纤维编织材料,后两屏采用芳纶纤维编织材料时,防护效果更好,说明多屏防护结构的前置防护屏采用软化温度较高的无机纤维编织材料时,可能会更好地破碎弹丸,从而提高防护结构的碎片撞击防护性能。  相似文献   

2.
 根据ORDEM2000模型和卫星标准解体模型(SBM),确定空间中真实空间碎片的典型形状和撞击姿态。利用AUTODYN仿真软件,基于碎片特征长度,对立方体、方形薄片超高速撞击产生的碎片云进行三维数值模拟,从形状、质量分布、速度分布与能量分布深入分析碎片云特性,并与通用的球形标准弹丸进行比对。结果表明:弹丸形状及撞击姿态对碎片云特性有显著影响,立方体和方形薄片弹丸角撞击时产生的毁伤能力最大,而球形弹丸最小。因此,基于标准球形弹丸获得的弹道极限方程低估了航天器遭受空间碎片撞击损伤的风险,而基于真实碎片特征长度的弹丸形状效应研究将对现行的球形弹丸弹道极限方程(或曲线)做出更合理的修正。  相似文献   

3.
弹丸超高速撞击防护屏碎片云数值模拟   总被引:12,自引:0,他引:12       下载免费PDF全文
 低地球轨道的各类航天器易受到微流星体及空间碎片的超高速撞击。这些撞击损伤航天器飞行的关键系统,进而导致航天器发生灾难性失效。为了保证航天员的安全及航天器的正常运行,微流星体及空间碎片防护结构设计是航天器设计的一个重要问题。采用AUTODYN软件进行了弹丸超高速正撞击及斜撞击防护屏所产生碎片云的SPH法数值模拟,给出了二维及三维模拟结果;研究了防护屏厚度、弹丸形状、撞击速度以及材料模型等对碎片云的影响。模拟结果同高质量实验研究的结果进行了比较,模拟的碎片云形状和碎片云特征点的速度同实验相吻合。验证了数值模拟方法的有效性。  相似文献   

4.
碎片超高速撞击防护结构粒子场三维重构   总被引:1,自引:1,他引:0  
为模拟空间碎片超高速撞击航天器防护结构表面材料喷射/溅射粒子场演化过程,并获取粒子场相关物理信息,基于粒子场同轴激光全息图像开展了碎片撞击过程的三维重构技术研究.首先对全息图像进行边缘剪切和缩放,将其划分为分辨率300×300左右的子图像以便于进行网格剖分;对于粒子堆叠区域子图像,采用基于三角化的网格剖分算法;剖分后形成的单一粒子采用Sobel算子提取其二维轮廓,然后将其投影到特定的三维空间形成三维形体;基于MAXScript语言实现了粒子场演化过程模拟.重构结果表明,无论是粒子场静态三维重构结果还是其演化过程均与撞击试验全息图像吻合较好,从而验证了该重构技术的有效性,为研究空间碎片对航天器防护结构的损伤效应提供了一种新的思路.  相似文献   

5.
为模拟空间碎片超高速撞击航天器防护结构表面材料喷射/溅射粒子场演化过程,并获取粒子场相关物理信息,基于粒子场同轴激光全息图像开展了碎片撞击过程的三维重构技术研究.首先对全息图像进行边缘剪切和缩放,将其划分为分辨率300×300左右的子图像以便于进行网格剖分;对于粒子堆叠区域子图像,采用基于三角化的网格剖分算法;剖分后形成的单一粒子采用Sobel算子提取其二维轮廓,然后将其投影到特定的三维空间形成三维形体;基于MAXScript语言实现了粒子场演化过程模拟.重构结果表明,无论是粒子场静态三维重构结果还是其演化过程均与撞击试验全息图像吻合较好,从而验证了该重构技术的有效性,为研究空间碎片对航天器防护结构的损伤效应提供了一种新的思路.  相似文献   

6.
以空间碎片防护为背景,回顾了超高速铝弹丸正撞击单层和双层铝合金防护结构的研究进展,讨论了目前针对超高速撞击的弹丸发射技术和数值模拟方法(如Euler方法、无网格方法等)的优缺点。数值模拟不仅建立在离散方法上,还需要提供准确的材料本构模型和状态方程。介绍了常用材料模型(包括Johnson-Cook、Steinberg-Guinan模型)和状态方程(包括Tillotson、ANEOS、SESAME、GRAY三相状态方程)。基于实验和数值模拟,目前对7 km/s以下的超高速撞击物理过程已经认识得比较清楚。对单层板,重点讨论了板的穿孔特征和孔径模型;对双层板,除了前板的穿孔外,还讨论了碎片云的分布特征、材料相变、碎片云的相态分布、弹丸形状的影响、碎片云的散布模型以及碎片云对后板造成的破坏特征。最后介绍了工程防护中较为重要的防护结构的弹道极限方程。单层板和双层板的弹道极限方程研究近年来取得了较大进展。本文回顾了国内外常用的弹道极限方程以及近年来新提出的理论模型和基于人工神经网络的模型等。  相似文献   

7.
弹丸超高速撞击铝靶成坑数值模拟   总被引:5,自引:0,他引:5       下载免费PDF全文
 低地球轨道的各类航天器易受到微流星体及空间碎片的超高速撞击,损伤航天器飞行关键系统,进而导致航天器发生灾难性的失效。微流星体及空间碎片防护结构设计,是航天器设计的一个重要问题。采用AUTODYN软件进行了弹丸超高速正撞击及斜撞击铝靶成坑的数值模拟,给出了二维及三维模拟结果。研究了弹丸密度、弹丸形状、板厚度、弹丸速度、弹丸直径和弹丸撞击入射角等对靶成坑的影响。模拟结果同实验结果进行了比较,模拟的成坑形状和特征尺寸同实验相吻合。验证了数值模拟方法的有效性。  相似文献   

8.
为研究多层板结构中薄板在碎片云作用下的变形与破坏问题,开展了超高速撞击多层板实验。实验结果表明,薄板在高速碎片云冲击下的典型破坏特征为中央穿孔及环孔凹陷变形与花瓣型撕裂。在此基础上,考虑弯矩和膜力作用,建立了描述薄板在轴对称分布强冲击载荷作用下大变形的理想刚塑性环板模型,据此可以计算环板变形过程的横向与径向速度场,结合Grady破碎理论,可以计算花瓣型撕裂的花瓣数,理论计算值与实验比较吻合。研究结果可以为多层板结构在超高速弹丸撞击下的毁伤评估提供理论基础。  相似文献   

9.
密度梯度薄板超高速撞击特性的实验研究   总被引:5,自引:0,他引:5       下载免费PDF全文
侯明强  龚自正  徐坤博  郑建东  曹燕  牛锦超 《物理学报》2014,63(2):24701-024701
以二级轻气炮作为加载手段,在撞击速度范围为4.0—7.0 km/s内获得了Ti6Al4V/Ly12 Al/聚酰胺纤维密度梯度薄板的穿孔特性、验证板损伤特性和弹道极限特性.与Ly12 Al薄板的相应实验结果的对比显示,在相同撞击速度下,该密度梯度薄板的穿孔直径更大,且随撞击速度的增大而增加;其验证板上的撞击坑尺寸小,且随撞击速度的增大而减小;其弹道极限比Ly12 Al薄板的弹道极限高50%以上.分析认为,超高速撞击下Ti6Al4V/Ly12 Al/聚酰胺纤维密度梯度薄板中高阻抗的Ti6Al4V产生的峰值冲击压力比Ly12 Al薄板的峰值冲击压力高,这增强了对弹丸的破碎能力;而其中的聚酰胺纤维层延长了冲击波在薄板中的传播时间,增大了冲击波的耗散,使撞击过程中转化的不可逆功增多,从而消耗了弹丸更多的动能.使用这种密度梯度材料作为防护屏具有很好的抗撞击能力,在航天器空间碎片防护工程应用中具有很大的潜力.  相似文献   

10.
铝球弹丸超高速斜撞击薄铝板特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 利用2017铝合金球形弹丸超高速斜撞击2A12铝合金薄板,模拟空间碎片对航天器防护屏的超高速撞击作用。分析了铝合金薄板超高速斜撞击穿孔特性与弹丸滑弹返溅特性,建立了铝合金球形弹丸超高速斜撞击铝合金薄板的穿孔经验公式。弹丸撞击速度分别为2.58、3.56和4.31 km/s,撞击角度为10°~80°。实验结果表明:铝合金薄板超高速斜撞击椭圆穿孔尺寸与撞击速度和撞击角度有关,直径为3.97 mm的铝合金球形弹丸超高速斜撞击厚度为1 mm的铝合金薄板时,发生滑弹返溅的临界撞击角在30°~40°之间。最大滑弹返溅角随着撞击角的增大而逐渐减小,此时滑弹返溅碎片云的影响范围缩小,但破坏能力增强。弹丸撞击速度对铝合金薄板超高速斜撞击穿孔的椭圆度影响较小。  相似文献   

11.
超高速撞击中影响碎片云形状因素分析   总被引:1,自引:0,他引:1  
 应用光滑粒子流体动力学(SPH)方法对铝球弹丸正撞击防护屏进行了数值模拟研究,将计算结果同相应的实验结果进行了比较,二者符合得很好。在此基础上分析了撞击速度、防护屏厚度、铝球直径、材料、弹丸形状、间隙量等因素对碎片云的影响规律。并以碎片云的长度和径向尺寸为指标,应用正交设计方法对撞击速度、防护屏厚度、铝球直径三因素对指标的影响主次关系进行了分析研究,防护屏厚度是碎片云长度的主要影响因素,而弹丸直径是碎片云径向的主要影响因素。  相似文献   

12.
 针对空间碎片超高速撞击充气压力容器问题,应用非线性动力学分析软件AUTODYN-2D,采用SPH方法对碎片云在高压气体中的运动特性进行了数值模拟研究。在建模过程中,分析比较了材料状态方程对数值模拟结果的影响,并通过与实验结果的比较,选取了适合该问题的状态方程,验证了数值模拟方法的有效性。结果表明:由于容器内压气体的存在,碎片云运动发生减速,并且碎片云的轴向扩展速度相对于碎片云的径向扩展速度减速较慢;高速撞击产生的碎片云与容器内的高压气体发生了强烈的相互作用,碎片云尖端产生的钉状物及高压气体中产生的冲击波是控制容器在撞击后发生进一步破坏的两个重要因素。  相似文献   

13.
 针对空间碎片超高速撞击充气压力容器的二次碎片减速运动问题,首先根据弹丸撞击容器前壁后的破碎程度,将二次碎片分为弹丸未破碎、未完全破碎及完全破碎3种模式,分别建立了二次碎片未受气体扰动时的初始模型;然后采用理论分析手段,应用流体动力学、气-固两相流理论,对弹丸不同破碎模式下的二次碎片在容器内的运动过程进行分析,建立了二次碎片减速运动的计算模型,通过与数值模拟结果的比较,验证了计算模型的有效性。  相似文献   

14.
 C-SiC复合材料是一种随着航空航天技术发展而研制开发的新型材料,具有优异的力学性能,可以很好地满足航天器防护系统的使用要求,因此其超高速碰撞力学性能研究具有重要意义。基于现有的有关C-SiC复合材料力学性能的实验数据和模拟结果,推导得到模拟C-SiC复合材料超高速碰撞时所需的一系列参数。利用AUTODYN进行数值模拟,获得了C-SiC复合材料双层防护结构在超高速碰撞下的特性及弹道极限曲线,总结得出预测C-SiC复合材料双层防护结构的弹道极限方程。  相似文献   

15.
含泡沫铝防护结构的超高速撞击数值模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 泡沫铝是一种新型航天器防护材料,拥有良好的抵御空间碎片超高速撞击的特性。模仿泡沫金属的生产原理,建立了泡沫金属微结构几何模型,结合自编的光滑质点流体动力学程序进行了超高速撞击数值仿真,通过与实验结果的对比,验证了模型的有效性。提出了两种含泡沫铝的空间碎片防护结构,即填充泡沫铝结构和夹层泡沫铝结构。对这两种结构分别进行了仿真计算,获得了其撞击极限曲线。分析结果表明,在空间碎片防护领域涉及的大部分撞击速度区间内,填充泡沫铝结构的防护性能优于夹层泡沫铝结构。  相似文献   

16.
碎片云动量特性数值仿真研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 铝合金球形弹丸高速撞击薄铝板时,会造成薄铝板穿孔并自身发生破碎,在铝板前后两侧产生碎片云,分别为反溅碎片云和穿透碎片云。反溅碎片云及穿透碎片云具有各自的动量特性,对其动量特性的研究有助于为碎片云理论建模提供依据。采用AUTODYN V6.0软件对直径为6.35 mm的Al 1100-O球形弹丸高速正撞击6种厚度的Al 6061-T6薄板进行了数值仿真计算,撞击速度为1.0~5.0 km/s。得到上述两种碎片云的动量,确定了动量值随撞击速度v及薄板厚度δ的变化规律。同时,利用仿真得到的动量数据,采用多元回归方法,分别建立了两种碎片云动量模型。最后,对美国国家航空航天局(NASA)报告给出的7种工况下的撞击实验进行了数值仿真计算,并将动量值与实验结果进行了比较,得到的比较结果可用以分析数值仿真的有效性。  相似文献   

17.
 为了研究空间碎片对航天器防护结构的高速斜撞击损伤特性,采用二级轻气炮发射铝球弹丸,对铝Whipple防护结构进行高速斜撞击实验。弹丸直径为3.97 mm,撞击速度为1.14~5.35 km/s,撞击角度为0°~70°。实验得到了铝Whipple防护结构在不同撞击速度区间的后板损伤模式,分析了后板撞击损伤及弹坑分布特性,建立了预测铝球弹丸高速斜撞击铝Whipple防护结构时后板弹坑分布的经验公式。结果表明:在大角度斜撞击条件下,对于一定的撞击速度,铝Whipple防护结构的后板弹坑分布会出现两个区域;弹丸的撞击破碎临界速度将影响后板损伤随撞击角的变化关系;对于铝Whipple防护结构,存在使后板撞击损伤最严重的临界撞击角。  相似文献   

18.
空间碎片超高速撞击充气压力容器前壁准静态破坏分析   总被引:1,自引:0,他引:1  
针对空间碎片超高速撞击充气压力容器前壁发生准静态破坏问题,将其简化为受双向拉应力的圆孔边双裂纹的线弹性断裂问题进行处理;并在数值模拟及理论分析的基础上建立了充气压力容器前壁发生准静态破坏的预报模型,得到了当球形弹丸撞击速度为7.0 km/s时、壁厚为1.0 mm的Al5754圆柱形压力容器前壁发生准静态破坏的临界应力曲...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号