首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Holman KW  Jones DJ  Ye J  Ippen EP 《Optics letters》2003,28(23):2405-2407
We have performed detailed studies on the dynamics of a frequency comb produced by a mode-locked laser diode (MLLD). Orthogonal control of the pulse repetition rate and the pulse-to-pulse carrier-envelope phase slippage is achieved by appropriate combinations of the respective error signals to actuate the diode injection current and the saturable absorber bias voltage. Phase coherence is established between the MLLD at 1550 nm and a 775-nm mode-locked Ti:sapphire laser working as part of an optical atomic clock.  相似文献   

2.
We have used the comb of optical frequencies emitted by a mode-locked laser as a ruler to measure differences of as much as 20 THz between laser frequencies. This is to our knowledge the largest gap measured with a frequency comb, with high potential for further improvements. To check the accuracy of this approach we show that the modes are distributed uniformly in frequency space within the experimental limit of 3.0 parts in 10(17) . By comparison with an optical frequency comb generator we have verified that the mode separation equals the pulse repetition rate within the experimental limit of 6.0 parts in 10(16).  相似文献   

3.
Low-noise operation of a 9-GHz hybridly mode-locked laser diode is demonstrated. The integrated timing jitter was 47 fs (10 Hz to 10 MHz) and 86 fs (10 Hz to 4.5 GHz), with a pulse width of 6.7 ps. The noise performance as a function of filter bandwidth and oscillator noise is also addressed.  相似文献   

4.
Fatemi FK  Lou JW 《Optics letters》2004,29(20):2351-2353
We have demonstrated wideband frequency modulation of the frequency comb lines of a high-repetition-rate fiber laser. With a modulation frequency of only approximately 10 kHz, we have generated modulation indices in excess of 250. Although internally modulated, the laser remains stable with 2-kHz linewidths, and thus the 10-kHz modulation sidebands are still clearly resolved even after propagation over several hundred kilometers. This unique characteristic is used for simultaneous measurement of propagation distances to 1-m resolution and velocities of less than 3 mm/s over a distance of greater than 50 km.  相似文献   

5.
An optical ultra-short pulse train with a duration of 2.9 ps was successfully generated from a passively mode-locked laser diode. The time-bandwidth product was 0.43, and it was very close to the transformlimited value of a Gaussian waveform. The highest peak power of 10 mW in an InP-based passively mode-locked laser has been achieved. The laser is promisng as an optical source for an ultra-high-speed bit rate transmission system, especially for the optical time division multiplexing (OTDM) system.  相似文献   

6.
The intensity and phase of ultrashort optical pulses from a 40-GHz monolithic InGaAsP quantum-well heterostructure laser diode are retrieved for the first time from two-photon absorption pulse spectrograms. The pulse traces showing the mode-locked pulses from the laser are distorted due to ultrafast absorption saturation associated with quantum-confined Stark excitons. It is suggested from comparison between experimental time-integrated spectrum and reconstructed pulse spectrum that the mode-locked pulses are formed only from a part of the longitudinal modes in the laser cavity.  相似文献   

7.
We report ultra-stable locking of a commercially available extended cavity diode laser to a vibration-insensitive, high finesse Fabry-Perot cavity. A servo bandwidth of 2 MHz is demonstrated. The individual frequency stability of the diode laser after locking is independently measured with a three-cornered-hat method. The resulting Allan deviation reaches a level of 3 × 10− 15 at 1 s, even without vibration isolation of the reference cavity.  相似文献   

8.
9.
We theoretically and experimentally investigate wavelength tuning of synchronously pumped optical parametric oscillators (OPOs) on changing the cavity length or the pump-repetition rate. Conditions for rapid and wide-range wavelength access are derived. Using an OPO pumped directly by a mode-locked diode-laser master-oscillator power-amplifier (MOPA) system, an all-electronically controlled access to near- and mid-infrared wavelengths is demonstrated. The singly (signal) resonant OPO is based on periodically poled lithium niobate (PPLN) and emits 8 ps idler pulses at a repetition rate of 2.5 GHz in the wavelength range 1986 to 2348 nm (signal: 1530 to 1737 nm). Wavelength tuning over 114 nm (signal) and 189 nm (idler) is achieved solely by electronically varying the repetition rate of the diode-laser oscillator over 720 kHz. By controlling the repetition rate with a programmable driver, an arbitrary emission sequence of the OPO on two wavelength channels is generated, with access times as short as 10 μs. 11 OPO wavelengths equally spaced in the range 1627–1689 nm (signal) or 2054–2154 nm (idler) could be addressed. Received: 6 September 2000 / Revised version: 16 March 2001 / Published online: 23 May 2001  相似文献   

10.
Kang JU  Frankel MY  Esman RD 《Optics letters》1998,23(15):1188-1190
We report an experimental demonstration of a photonic microwave shifter using a highly chirped mode-locked fiber laser. The system is based on dispersive compression or expansion of highly chirped optical pulses that are amplitude modulated by the microwave signal. Using this technique, we demonstrated frequency shifting of a microwave signal from 10 GHz down to 5 GHz and up to 25 GHz.  相似文献   

11.
A frequency comb spanning more than one octave has been achieved by injecting the second-harmonic generation (780 nm) of a mode-locked fiber laser (1.56 microm) into a photonic crystal fiber. We propose and realize a novel interferometric scheme for observing the carrier-envelope offset frequency of the frequency comb. Frequency noise has been observed on the measured carrier-envelope offset frequency, which has been confirmed to be generated in the photonic crystal fiber by comparing the measured beat frequencies between cw lasers and frequency combs before and after the photonic crystal fiber. The mode-locked fiber laser is considered to be an important candidate for the light source used in realizing a compact optical frequency measurement system including applications in the telecommunication bands.  相似文献   

12.
《光学技术》2013,(6):526-529
根据高稳定性半导体激光(LD)泵浦单块非平面环形腔(NPRO)单频激光器对于功率稳定性和频率稳定性的要求,设计并研制了一套高精度的精密温控系统。该系统基于模拟比例-积分-微分(PID)控制原理,采用程控调节P和PI的方式,通过对半导体制冷器(TEC)的驱动控制,实现在-10+70℃范围内对LD和NPRO单块晶体温度的精确控制,控温精度达±0.01℃。采用该温控系统的LD泵浦1645nm NPRO单频激光器,30min内相对波长稳定性达8.32×10-7。  相似文献   

13.
The generation of continuous trains of tunable infra-red pulses by the nonlinear mixing of the wave-lengths available from a self-contained synchronously mode-locked cw dye laser is described. The factors determining the optimization of the process are identified and their roles demonstrated.  相似文献   

14.
We demonstrate a versatile new technique that provides a phase coherent link between optical frequencies and the radio frequency domain. The regularly spaced comb of modes of a mode-locked femtosecond laser is used as a precise ruler to measure a large frequency gap between two different multiples (harmonics or subharmonics) of a laser frequency. In this way, we have determined a new value of the hydrogen 1S-2S two-photon resonance, f(1S-2S) = 2 466 061 413 187.29(37) kHz, representing now the most accurate measurement of an optical frequency.  相似文献   

15.
A 40-GHz, 100-fs pulse train was successfully generated by soliton compression of a mode-locked laser diode (MLLD) pulse with a dispersion-decreasing fiber. The MLLD had a longitudinal mode linewidth as broad as 60 MHz, which made it possible to suppress stimulated Brillouin scattering and achieve stable, ultrahigh-speed pulse compression without applying external frequency modulation.  相似文献   

16.
We report on the generation of 250mW of coherent 460-nm light by single-pass frequency doubling of the mode-locked picosecond pulses emitted by an InGaAs diode master oscillator power amplifier in periodically poled KTP.  相似文献   

17.
Wang X  Liu Y  Lu H  Wang X  Fang Z 《Optics letters》2005,30(8):860-862
We have found that the optical power of a laser diode (LD) does not change with the injected light intensity that is modulated when its injection current is at some specific values. The amplitude of optical power change of the LD varies periodically with the increase of the injection current. It is made clear through theoretical analysis that these phenomena are caused by gain compression and interband carrier absorption of the LD that depend on longitudinal mode competition, bandgap-shrinkage effects, thermal conduction, and so on. Our experimental results make it easy to eliminate optical power change of LDs. We only need to choose a proper value of the injection current.  相似文献   

18.
A method to generate the optical quadruple frequency millimeter-wave with high power efficiency is pro- posed and demonstrated based on the combination of the injection 2nd-order rational harmonic mode- locked fiber ring laser technique and the fiber grating notch filter. In this approach, the fiber Bragg grating notch filter is inserted into the laser cavity to prevent the undesired optical carrier, so that the pump power can be converted to 2nd-order harmonic wave more efficiently. In our experiment, the power efficiency of optical quadruple frequency millimeter-wave (40 GHz) generation is ten folds of that of our previous method based only on the rational harmonic mode-locked technique.  相似文献   

19.
We describe the design and performance of an injection-locked diode laser locked to a stabilized, single frequency, unmodulated diode laser. The master oscillator is a grating-tuned, external cavity diode laser which is stabilized on a Doppler free alkali metal resonance transition frequency via Zeeman locking. The master oscillator frequency is shifted by an acousto-optic modulator, which provides optical isolation of the master oscillator laser while tuning of the acousto-optic modulation frequency can also provide frequency offset tuning. The slave laser is a free running diode which is injection-locked by a small fraction of the frequency shifted master oscillator light. Good long- and short-time frequency stability are observed for both the Zeeman-locked master oscillator and the injection-locked slave laser.  相似文献   

20.
Passive mode-locking of a rhodamine 6G dye laser has been achieved, using a pulsed xenon ion laser as a pumping source. A pulse width of 5 ps and a peak power of 4 kW have been obtained. Thermal problems were encountered, which adversely affected the operation of the dye laser. Work is in progress to improve these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号