共查询到20条相似文献,搜索用时 68 毫秒
1.
2.
The Gross–Pitaevskii equation (GPE) describing the evolution of the Bose–Einstein condensate (BEC) order parameter for weakly
interacting bosons supports dark solitons for repulsive interactions and bright solitons for attractive interactions. After
a brief introduction to BEC and a general review of GPE solitons, we present our results on solitons that arise in the BEC
of hard-core bosons, which is a system with strongly repulsive interactions. For a given background density, this system is
found to support both a dark soliton and an antidark soliton (i.e., a bright soliton on a pedestal) for the density profile.
When the background has more (less) holes than particles, the dark (antidark) soliton solution dies down as its velocity approaches
the sound velocity of the system, while the antidark (dark) soliton persists all the way up to the sound velocity. This persistence
is in contrast to the behaviour of the GPE dark soliton, which dies down at the Bogoliubov sound velocity. The energy–momentum
dispersion relation for the solitons is shown to be similar to the exact quantum low-lying excitation spectrum found by Lieb
for bosons with a delta-function interaction. 相似文献
3.
D. Hellweg S. Dettmer P. Ryytty J.J. Arlt W. Ertmer K. Sengstock D.S. Petrov G.V. Shlyapnikov H. Kreutzmann L. Santos M. Lewenstein 《Applied physics. B, Lasers and optics》2001,73(8):781-789
We demonstrate the existence of phase fluctuations in elongated Bose–Einstein condensates (BECs) and study the dependence
of these fluctuations on the system parameters. A strong dependence on temperature, atom number, and trapping geometry is
observed. Phase fluctuations directly affect the coherence properties of BECs. In particular, we observe instances where the
phase-coherence length is significantly smaller than the condensate size. Our method of detecting phase fluctuations is based
on their transformation into density modulations after ballistic expansion. An analytic theory describing this transformation
is developed.
Received: 13 July 2001 / Revised version: 28 September 2001 / Published online: 23 November 2001 相似文献
4.
An overview of the physics of spinor and dipolar Bose–Einstein condensates (BECs) is given. Mean-field ground states, Bogoliubov spectra, and many-body ground and excited states of spinor BECs are discussed. Properties of spin-polarized dipolar BECs and those of spinor–dipolar BECs are reviewed. Some of the unique features of the vortices in spinor BECs such as fractional vortices and non-Abelian vortices are delineated. The symmetry of the order parameter is classified using group theory, and various topological excitations are investigated based on homotopy theory. Some of the more recent developments in a spinor BEC are discussed. 相似文献
5.
J. Fortágh H. Ott S. Kraft A. Günther C. Zimmermann 《Applied physics. B, Lasers and optics》2003,76(2):157-163
In this article, we describe an experimental system for generating Bose–Einstein condensates and controlling the shape and
motion of a condensate by using miniaturised magnetic potentials. In particular, we describe the magnetic trap setup, the
vacuum system, the use of dispenser sources for loading a high number of atoms into the magneto-optical trap, the magnetic
transfer of atoms into the microtrap, and the experimental cycle for generating Bose–Einstein condensates. We present first
results on outcoupling of condensates into a magnetic waveguide and discuss influences of the trap surface on the ultra-cold
ensembles.
Received: 21 August 2002 / Revised version: 10 December 2002 / Published online: 26 February 2003
RID="*"
ID="*"Corresponding author. Fax: +49-7071/295-829, E-mail: fortagh@pit.uni-tuebingen.de 相似文献
6.
Spin–orbit-coupled spin-1 Bose–Einstein condensates confined in radially periodic potential 下载免费PDF全文
We investigate the ground states of spin-1 Bose–Einstein condensates (BECs) with spin–orbit coupling in a radiallyperiodic potential by numerically solving the coupled Gross–Pitaevskii equations. In the radially periodic potential, wefirst demonstrate that spin–orbit-coupled antiferromagnetic BECs support a multiring petal phase. Polar–core vortex canbe observed from phase profiles, which is manifested as circularly symmetric distribution. We further show that spin–orbitcoupling can induce multiring soliton structure in ferromagnetic BECs. It is confirmed especially that the wave-functionphase of the ring corresponding to uniform distribution satisfies the rotational symmetry, and the wave-function phase ofthe ring corresponding to partial splitting breaks the rotational symmetry. Adjusting the spin–orbit coupling strength cancontrol the number of petal in antiferromagnetic BECs and the winding numbers of wave-function in ferromagnetic BECs.Finally, we discuss effects of spin-independent and spin-dependent interactions on the ground states. 相似文献
7.
8.
We investigate a kind of solitons in the two-component Bose–Einstein condensates with axisymmetric configurations in the R2×S1space. The corresponding topological structure is referred to as Hopfion. The spin texture differs from the conventional three-dimensional(3D) skyrmion and knot, which is characterized by two homotopy invariants. The stability of the Hopfion is verified numerically by evolving the Gross–Pitaevskii equations in imaginary time. 相似文献
9.
《Comptes Rendus de l''Academie des Sciences Series IV Physics》2001,2(3):339-380
The coherent and collective nature of a Bose–Einstein condensate can enhance or suppress physical processes. Bosonic stimulation enhances scattering in already occupied states which leads to matter wave amplification, and the suppression of dissipation leads to superfluidity. In this article we present several experiments where enhancement and suppression have been observed and discuss the common roots of and differences between these phenomena. 相似文献
10.
We consider a spin-1 Bose-Einstein condensate trapped in a harmonic potential with different nonlinearity coeffi- cients. We illustrate the dynamics of soliton breathers in two-component and three-component states by numerically solv- ing the one-dimensional time-dependent coupled Gross-Pitaecskii equations (GPEs). We present that two condensates with repulsive interspecies interactions make elastic collision and novel soliton breathers are created in two-component state. We also demonstrate novel soliton breathers in three-component state with attractive coupling constants. Furthermore, possible reasons for creating soliton breathers are discussed. 相似文献
11.
The dynamics of a bright-bright vector soliton in a cigar-shaped Bose-Einstein condensate trapping in a harmonic potential is studied.The interaction between bright solitons in different species with small separation is derived.Unlike the interaction between solitons of the same species,it is independent of the phase difference between solitons.It may be of attraction or repulsion.In the former case,each soliton will oscillate about and pass through each other around the mass-center of the system,which will also oscillate harmonically due to the harmonic trapping potential. 相似文献
12.
In this Letter we present soliton solutions of two coupled nonlinear Schrödinger equations modulated in space and time. The approach allows us to obtain solitons for a large variety of solutions depending on the nonlinearity and potential profiles. As examples we show three cases with soliton solutions: a solution for the case of a potential changing from repulsive to attractive behavior, and the other two solutions corresponding to localized and delocalized nonlinearity terms, respectively. 相似文献
13.
14.
The ring dark solitons and their head-on collisions in a
Bose--Einstein condensates with thin disc-shaped potential
are studied. It is shown that the system admits a solution with
two concentric ring solitons, one moving inwards and the other
moving outwards, which in small-amplitude limit, are described by
the two cylindrical KdV equations in the respective reference
frames. By using the extended Poincar\'e--Lighthill--Kuo
perturbation method, the analytical phase shifts following
the head-on collisions between two ring dark solitary waves are
derived. It is shown that the phase shifts decrease with the
radial coordinate $r$ according to the $r^{-1/3}$ law and depend
on the initial soliton amplitude and radius. 相似文献
15.
首先建立起玻色-爱因斯坦凝聚孤子链的微扰复数Toda链理论,然后深入研究玻色-爱因斯坦凝聚N-孤子间的绝热相互作用,分别通过对二次外势场、周期性外势场和二者叠加的复合外势场所引起的三类微扰,利用微扰的复数Toda链理论给出了解析处理, 并和基于分步傅里叶变换的直接数值方法进行比较,发现微扰的复数Toda链方程能够充分揭示上述三类外势场中的N-孤子链的动力学行为和特征.同时还给出了从孤子链中提取一个或多个局域态的倾斜势场或周期性势场的强度临界值,这可为玻色-爱因斯坦凝聚的实验研究
关键词:
玻色-爱因斯坦凝聚
Gross-Pitaevskii方程
物质波孤子
相互作用 相似文献
16.
玻色-爱因斯坦凝聚体与势垒或势阱的量子反射及干涉是考察宏观物质波奇特物性的最有效途径之一.利用传播子方法和基于冷原子实验广泛采用的飞行时间吸收成像方案,研究自旋相关玻色-爱因斯坦凝聚体在半无限深势阱中的反射和干涉演化动力学,得到了自旋相关的凝聚体波函数的严格解析解.结果表明,当自旋相关光晶格关闭后,非局域于不同格点中相同自旋态的物质波在自由膨胀过程中发生量子干涉,形成了对比度明显的干涉条纹.与此同时,扩张的自旋相关物质波包与半无限深势阱壁相遇发生量子反射,反射波与入射波产生二重干涉,在密度分布两边对称的局部位置出现剧烈的振荡,干涉条纹表现出显著的调制效应.分析讨论了自旋态、相干输运距离和相对相位等因素对干涉条纹的影响.该研究有助于促进对自旋相关凝聚体宏观量子特性的认识,为深入检验自旋相关光晶格中凝聚体干涉的理论模型和物理机理提供依据和新方案. 相似文献
17.
18.
19.
20.
S. MiddelkampP.G. Kevrekidis D.J. FrantzeskakisR. Carretero-González P. Schmelcher 《Physica D: Nonlinear Phenomena》2011,240(18):1449-1459
We study the existence and stability properties of clusters of alternating charge vortices in repulsive Bose-Einstein condensates. It is illustrated that such states emerge from cascades of symmetry-breaking bifurcations that can be analytically tracked near the linear limit of the system via weakly nonlinear few-mode expansions. We present the resulting states that emerge near the first few eigenvalues of the linear limit, and illustrate how the nature of the bifurcations can be used to understand their stability. Rectilinear, polygonal and diagonal vortex clusters are only some of the obtained states while mixed states, consisting of dark solitons and vortex clusters, are identified as well. We also explore the evolution of unstable states and their transient dynamics exploring configurations of nearby bifurcation branches. 相似文献