首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New solid polymer electrolytes are developed for a lithium power source used at the temperatures up to 100°C. Polyester diacrylate (PEDA) based on oligohydroxyethylacrylate and its block copolymers with polyethylene glycol were offered for polymer matrix formation. The salt used was LiClO4. The ionic conductivity of electrolytes was measured in the range of 20 to 100°C using the electrochemical impedance method. It is shown that the maximum conductivity in the whole temperature range is characteristic of the electrolyte based on the PEDA copolymer and polyethylene glycol condensation product (2.8 × 10?6 S cm?1 at 20°C, 1.8 × 10?4 S cm?1 at 95°C).  相似文献   

2.
A series of aliphatic polyesters of sebacoyl chloride and poly(ethylene glycol) containing a different number of ethylene oxide groups was synthesized and characterized. These polyesters were complexed with lithium perchlorate to obtain a new class of polymer electrolyte. The relationships between the structure and properties of these polymer electrolytes were investigated. The main factor that affects the ionic conductivity in these systems was found to be the solvating capacity of the polyester for the lithium salt. These polymer electrolytes showed ionic conductivities up to 10?5 ? 10?4 S/cm at 25°C. The mechanical strength was improved by cross-linking, and the cross-linked polyester complexed with a LiCIO4 salt showed an ionic conductivity of 2 × 10?5 S/cm at room temperature. 7Li NMR spin-spin relaxation and dielectric relaxation studies were also carried out to investigate the local environments and dynamics of ions in the polymer electrolytes. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
A gel polymer electrolyte (GPE) was prepared by in-situ thermal polymerization of 1,3-butanediol diacrylate (BDDA) in a EC/EMC/DMC electrolyte solution at 100 °C. The GPE with 15 wt.% polymer content appears as apparently dry polymer with sufficient mechanical strength and shows a high ionic conductivity of 3.2×10–3 S cm–1 at 20 °C. The MCMB–LiCoO2 type polymer Li-ion batteries (PLIB) prepared using this in-situ internal polymerization method exhibit a very high initial charge–discharge efficiency of 92.1%, and can deliver 94.4% of its nominal capacity at 1.0 C rate and 70.7% of its room temperature capacity at –20 °C. Also, the PLIB cells show very good cycling ability with >85% capacity retention after 300 cycles. The excellent charge–discharge properties of the PLIB cells are attributed to the integrated structure in which the polymer matrix spreads over entire region of the cell acting as a strong binder and electrolyte carrier to produce a stabilized electrode–electrolyte interface. In addition, the fabricating process of the polymer cell is quite simple and convenient for practical applications.  相似文献   

4.
A series of the semi-interpenetrating polymer network (semi-IPN) membranes based on sulfonated polyimide and poly(ethylene glycol) diacrylate were prepared and characterized comparing with pure sulfonated polyimide membrane and commercially available membrane, Nafion® 117. The proton conductivity increased with the increase of poly(ethylene glycol) diacrylate contents in spite of the decrease in ion exchange capacity which is a key factor to improve the proton conductivity. The water stability of semi-IPN membranes containing poly(ethylene glycol) diacrylate is higher than the pure sulfonated polyimide membrane. Morphological structure showed that amorphous nature of the films also increased with the poly(ethylene glycol) diacrylate contents, which could make a crosslink, so that the crystallinity of polyimide could disappear. Semi-IPN membranes based on sulfonated polyimide and poly(ethylene glycol) diacrylate, which show good conductivity comparable to Nafion® 117 in the range of 20-50% content of poly(ethylene glycol) diacrylate, could be promising proton conducting membranes in fuel cell application.  相似文献   

5.
Novel composite solid polymer electrolytes (CSPEs) and composite gel polymer electrolytes (CGPEs) have been prepared. CSPE consists of poly(ether-urethane) network polymer, which is superior to poly(ethylene oxide) in mechanical stability due to its cross-linked structure, modified montmorillonite (MMMT) and LiClO4, and CGPE with good mechanical strength comprises of the CSPE and LiClO4–PC (propylene carbonate) solution. The ionic conductivity can be enhanced after the addition of MMMT, and CGPE exhibits ionic conductivity in the order of 10−3 S/cm at room temperature. The temperature dependence of the ionic conductivity of the CSPE follows the Vogel–Tamman–Fulcher (VTF) equation. The effects of MMMT on the interactions in these systems and the possible conduction mechanisms are also discussed.  相似文献   

6.
The structure and dynamics of polymer network electrolytes for lithium batteries based on polyester diacrylate, lithium perchlorate, and ethylene carbonate were studied. The polyester diacrylate contained diacrylate units, 2-hydroxyethyl acrylate units, and product of dimerization of the initial monomer (to 10% by mass). An 1 H NMR study revealed three phases corresponding to ethylene carbonate in the polymer, ethylene carbonate bound to Li+ ions, and cyclic dimer of 2-hydroxyethyl acrylate.  相似文献   

7.
The miscibility and thermal properties of polyethylene oxide(PEO)/oligoester resin (OER) blends and PEO/crosslinked polyester (PER) blends were studied by differential scanning calorimetry (DSC). The effect of quenching process on the crystallization behavior of PEO for these two systems were investigated and discussed in details. It has been found that a single, composition dependent glass transition temperature (Tg) was observed for all the blends, indicating that the two systems are miscible in the amorphous state at overall compositions. From the melting point depression of PEO, the interaction parameter χ12 for PEO/OER blends and that for PEO/PER blends were found to be −1.29 and −2.01, respectively. The negative values of χ12 confirmed that both PEO/OER blends and PEO/PER blends are miscible in the molten state. Quenching process has a greater hindrance on the crystallization of PEO/OER blends than on that of PEO/PER blends. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3161–3168, 1997  相似文献   

8.
丙烯腈-甲基丙烯酸酯网状凝胶聚合物电解质研究   总被引:1,自引:0,他引:1  
用酯化方法合成了甲基丙烯酸缩乙二醇二酯,获得了纯净样品,对合成的网状凝胶型聚合物电解质的合成条件进行了系统研究,获得了丙烯腈-甲基丙烯酸缩乙二醇二酯-增塑剂?锂盐网状凝胶电解质。通过红外光谱、核磁、DSC、TG等对丙烯腈-甲基丙烯酸缩乙二醇二酯的结构性能进行了研究。DSC测试结果表明合成的网状聚合物是非晶的,软化点温度为90℃左右,随丙烯腈与甲基丙烯酸缩乙二醇二酯的比例不同而不同。另外TG测试本电解质材料在300℃左右才分解,是理想的高温锂聚合物电池电解质材料。网状凝胶电解质在EC含量达到66%时,室温电导率可达到2.5×103S/cm。  相似文献   

9.
This paper analyzes the comparison between the performances and morphologies of the PMMA gel and composite electrolyte membrane with nanosized MgO particles. These polymer electrolytes were studied in detailed using XRD, DSC, SEM and AC impedance analysis. The conductivity enhancement has been attributed to the addition of ceramic filler that yields a significant increase of surface to volume ratio related to the decrease in glass transition temperature values in the composite polymer electrolyte. Good interfacial stability at the electrode/electrolyte interface resulted on account of the improved ion dissociation by ceramic filler and a rise in the room temperature conductivity (8.14 × 10−3 S cm−1) due to the iono-covalent or Lewis acid–base bonds to the ions and ether oxygen base groups was also observed. Further enhancement of conductivity has been observed on MgO surface, as Lewis-acidic sites interact with both PMMA and ClO4 ions. The percentage of swelling was found to increase with increasing soaking periods upto 12 h. Beyond that soaking period, it was found that there was a negligible increase in the % of swelling.  相似文献   

10.
Poly (acrylate-co-imide)-based gel polymer electrolytes are synthesized by in situ free radical polymerization. Infrared spectroscopy confirms the complete polymerization of gel polymer electrolytes. The ionic conductivity of gel polymer electrolytes are measured as a function of different repeating EO units of polyacrylates. An optimal ionic conductivity of the poly (PEGMEMA1100-BMI) gel polymer electrolyte is determined to be 4.8 × 10–3 S/cm at 25 °C. The lithium transference number is found to be 0.29. The cyclic voltammogram shows that the wide electrochemical stability window of the gel polymer electrolyte varies from −0.5 to 4.20 V (vs. Li/Li+). Furthermore, we found the transport properties of novel gel polymer electrolytes are dependent on the EO design and are also related to the rate capability and the cycling ability of lithium polymer batteries. The relationship between polymer electrolyte design, lithium transport properties and battery performance are investigated in this research.  相似文献   

11.
A series of all-solid polymer electrolytes were prepared by cross-linking new designed poly(organophosphazene) macromonomers. The ionic conductivities of these all-solid, dimensional steady polymer electrolytes were reported. The temperature dependence of ionic conductivity of the all-solid polymer electrolytes suggested that the ionic transport is correlated with the segmental motion of the polymer. The relationship between lithium salts content and ionic conductivity was discussed and investigated by Infrared spectrum. Furthermore, the polarity of the host materials was thought to be a key to the ionic conductivity of polymer electrolyte. The all-solid polymer electrolytes based on these poly(organophosphazenes) showed ionic conductivity of 10−4 S cm−1 at room temperature.  相似文献   

12.
Poly(acetyl ethylene oxide acrylate‐co‐vinyl acetate) (P(AEOA‐VAc)) was synthesized and used as a host for lithium perchlorate to prepare an all solid polymer electrolyte. Introduction of carbonyl groups into the copolymer increased ionic conductivity. All solid polymer electrolytes based on P(AEOA‐VAc) at 14.3 wt% VAc with 12wt% LiClO4 showed conductivity as high as 1.2 × 10?4 S cm?1 at room temperature. The temperature dependence of the ionic conductivity followed the VTF behavior, indicating that the ion transport was related to segmental movement of the polymer. FTIR was used to investigate the effect of the carbonyl group on ionic conductivity. The interaction between the lithium salt and carbonyl groups accelerated the dissociation of the lithium salt and thus resulted in a maximum ionic conductivity at a salt concentration higher than pure PAEO‐salts system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A new type of amphiphic polymer blend comprising polystyrene (PS), polyethylene oxide (PEO) and microspheres of crosslinked polystyrene sulfonic acid (PSSA) was prepared by solution blending and followed by casting. Besides providing protons, PSSA plays a role in enhancing the miscibility of polystyrene (PS) and polyethylene oxide (PEO) according to the IR and the DSC studies. The resulting polymer blend is a proton electrolyte. The influence of the mixing extent between PS and PEO on the proton conductivity has been studied. It is also found that for those samples in which PEO and PS mix well, the hydrophobic PS component can effectively prevent water evaporation from the hydrophilic components at elevated temperatures, and therefore preserve the proton conductivity (10−4 S/cm) at the temperature as high as 80 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1530–1538, 2000  相似文献   

14.
Photocured polymer electrolytes, applied onto a porous polypropylene separator, with conduction by lithium cations (1 × 10−4 S cm−1 at 20°C) are designed. The polymer is formed from a 1 : 1 mixture of oligourethane dimethacrylate and polypropylene glycol monomethacrylate, which are capable of undergoing polymerization via double bonds in a liquid organic electrolyte (0.5 M LiClO4) in a 1 : 1 mixture of propylene carbonate and dimethoxyethane. The polymer electrolyte comprises a polymer composition (20 wt %), a liquid electrolyte (78 wt %), and a photoinducer (2 wt %). Effect of insertion of dibenzo-18-crown-6 into the electrolyte on its electrochemical characteristics (on the electrolyte/Li interface) is investigated. Dependences of the bulk conductivity and exchange currents at the interface on the temperature and storage duration are studied at different crown ether contents.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 646–650.Original Russian Text Copyright © 2005 by Yarmolenko, Efimov.  相似文献   

15.
The effect of 15-crown-5, which is applied immediately to pure and modified surface of a lithium electrode, on the charge transfer resistance at the electrode/polymer electrolyte interface is studied. The polymer electrolyte consists of a 1: 1 mixture of oligourethan dimethacrylate and polypropylene glycol monomethacrylate (20 wt %), an initiator (azobisisobutyronitrile) (2 wt %), and a 1 M LiClO4 solution in gamma-butyrolactone (78 wt %). The conductivity of this gel electrolyte is 3 × 10?3 S cm?1. The temperature dependence of the impedance of the Li/gel electrolyte/Li electrochemical cells is measured for electrodes of four types. The activation energies for the charge transfer at the Li/electrolyte interface are calculated. It is found that, after treating the test lithium electrodes with 15-crown-5, the charge transfer resistance decreases, and in the case of the modified lithium surface, the activation energy for the process decreases by 1.8 times.  相似文献   

16.
Interactions between microporous PVdF and polar liquid electrolytes have been investigated. PVdF separators are an attractive alternative to microporous apolar polyolefins, such as polyethylene, whose poor wetting by these electrolytes induces a significant resistivity increase in lithium batteries. The swelling study of polymer/electrolyte interactions has shown that the resistivity increase induced by microporous PVdF is moderate and will enable the electrolyte composition to be optimized. Existence of a shut-down effect is an asset for the battery safety.  相似文献   

17.
This paper introduces an easy method for the fabrication of polymer Li-ion batteries with microporous gel electrolyte (MGE). The MGE is a multiphase electrolyte, which is composed of liquid electrolyte, gel electrolyte, and polymer matrix. The MGE not only has high ionic conductivity and good adhesion to the electrodes at low temperatures, but also retains good mechanical strength at elevated temperatures. Therefore, the MGE batteries are able to operate over a wide temperature range. During battery fabrication, the MGE is formed in situ by introducing liquid electrolyte into a swellable microporous polymer membrane and then heating or cycling the battery. In this work, the chemical compatibility of MGE with metal lithium during 60 °C storage and with LiMn2O4 cathode during cycling was studied. In addition, graphite/MGE/LiMn2O4 Li-ion batteries were made and evaluated.  相似文献   

18.
Abstract

A hydrophilic radical polymer electrode-based rechargeable battery was designed along the concept of green chemistry. A hydrophilic radical polymer, poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl vinylether), was synthesized as an electrode-active material; its battery demonstrated a high charging–discharging rate and long cycle life. The combination of the hydrophilic polymer electrode and an aqueous electrolyte for the battery fabrication was expected to provide safety improvements such as a low ignition risk besides the high battery performance. The green characteristics were studied using the “i-Messe,” an evaluation method proposed by the committee of the Green Sustainable Chemistry Network, Japan. The electrode-active polymer was evaluated for substantial improvements in disaster safety and health safety.  相似文献   

19.
The electric field dependence of the optical properties of a series of anion-conducting polymer electrolytes at an ITO–electrolyte interface was investigated. A change in reflectance and refractive index of polymer electrolytes [poly(ethyl methacrylate)]18(Bu3SnX)3Bu4NX where X = Cl, Br, and SCN was observed. This was ascribed to anion accumulation/depletion in the interfacial region. Shorter response times were observed for electrolytes with higher conductivities, illustrating the interrelationship between these two phenomena. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2057–2062, 1997  相似文献   

20.
The presented contribution aims at reconsidering the role of filler in affecting the ionic transport in composite gel electrolytes for Li-ion cells based on microporous polymer membranes. The gels have been prepared by swelling thin PVdF/HFP membranes either with conventional liquid electrolyte or with pure propylene carbonate solvent. The membranes contained dispersed submicron-size modified silica filler added in a wide range of weight ratios. The effect of filler content on the kinetics of liquid phase absorption and evaporation from the composite membranes, as well as on the conductivity of the corresponding gel electrolytes, has been studied and discussed in terms of the “colloidal” and “soggy sand” electrolyte concepts. It has been found that conductivity increase of composite gels is not directly correlated with the liquid electrolyte uptake. On this basis it is concluded that important part of ionic transport in this type of composite gel polymer electrolytes is realized on the filler grain boundaries, through overlapping space charge layers of the silica grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号