首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
近红外光谱分析技术   总被引:2,自引:0,他引:2  
张卉  宋妍  冷静  蒋庄德 《光谱实验室》2007,24(3):388-395
介绍了近红外光谱分析技术的工作原理,阐述了其数学模型的建立及分析过程,总结了现有常用的化学计量学方法及各自的优点,最后简单的概括了近红外光谱分析技术的应用,尤其是在制药方面的应用.  相似文献   

2.
采用近红外光谱分析技术对人参进行了光谱及定量分析。对人参的原始漫反射吸收光谱采用二阶导数、散射校正、相关分析等多种光谱解析手段,研究了人参中的主要成分总皂甙的光谱吸收特性,并结合偏最小二乘回归法对人参总皂甙进行了定标建模分析。分析结果精度高,定标标准差(RMSEC)为0.154%,相关系数为0.982 8。  相似文献   

3.
土壤水分对近红外光谱实时检测土壤全氮的影响研究   总被引:4,自引:0,他引:4  
利用近红外光谱技术实时预测土壤全氮含量是精细农业的研究热点之一,但是由于土壤水分在近红外波段的吸收系数较高,影响了土壤全氮含量的实时预测精度。使用布鲁克MATRIX_I傅里叶近红外光谱分析仪对不同土壤水分的土壤样本进行了近红外光谱扫描,定性和定量的分析了土壤水分对近红外光谱的影响,并提出了一种消除土壤水分对土壤全氮含量预测影响的方法。近红外光谱扫描结果显示在同一全氮含量水平下,随着土壤水分含量的增加,光谱吸光度呈逐渐上升的趋势,且变化趋势为非线性。通过对1 450和1 940 nm两个水分吸收波段的差分处理,设计了水分吸收指数MAI(moisture absorbance index),再对土壤按照水分含量梯度进行分类,提出了相应的修正系数。修正后的6个土壤全氮特征波段处(940,1 050,1 100,1 200,1 300和1 550 nm)的土壤吸光度值作为建模自变量,使用BP神经网络建立了土壤全氮预测模型,模型的RC,RV,RMSEC,RMSEP和RPD分别达到了0.86,0.81,0.06,0.05和2.75;与原始吸光度所建模型相比较模型精度得到了显著提高。实验结果表明本方法可以有效地消除土壤水分对近红外光谱检测土壤全氮含量预测的影响,为土壤全氮含量实时预测提供了理论和技术支持。  相似文献   

4.
色氨酸是人类一种必需氨基酸,也是稻米中一种重要的限制性氨基酸。从4年份1256份材料中选择出272份有代表性的样品,采用碱水解-分光光度法测定了其色氨酸含量。比较不同定标方法的预测结果发现,运用改良的偏最小二乘法(modified partial least square,MPLS)的全局(Global)定标方法和局部(Lo-cal)飞速定标方法的预测效果较佳,基于精米粉光谱建立的方程的预测标准误差均为0.007%,外部验证决定系数分别为87.1%和87.4%,可用于定量分析;而基于糙米光谱建立的定标方程的预测效果略差,但仍具有良好的预测能力。研究结果表明,近红外光谱技术可作为水稻育种中间材料的快速筛选和食品工业中稻米原料的品质监控手段。  相似文献   

5.
工业分析是生物质热化学工程技术中的一项常规应用分析。文章探讨了近红外光谱技术(NIRS)在秸秆工业组成分析上的应用,并利用近红外光谱技术预测了秸秆中挥发分和固定碳含量。利用Foss 6500光栅型近红外光谱仪在1 108~2 492 nm光谱范围内分别对直接切短秸秆样品中水分、灰分、挥发分和固定碳以及干燥粉碎样品中灰分、挥发分和固定碳的近红外光谱建立了预测模型。对于直接切短秸秆样品,水分、灰分、挥发分和固定碳校正模型外部验证的R2V(SEP)分别为0.92(0.76%),0.94(0.84%),0.88(0.82%)和0.75(0.65%)。干燥粉碎样品中灰分、挥发分和固定碳的近红外光谱模型外部验证的R2V(SEP)分别为0.98(0.54%),0.95(0.57%)和0.78(0.61%)。实验结果表明,近红外光谱技术能实现秸秆的快速分析和多组分同时测定, 从而可降低秸秆工业分析的成本。  相似文献   

6.
近红外光谱分析技术及发展前景   总被引:6,自引:0,他引:6  
 近红外光(nearinfrared,NIR)是介于可见光(VLS)和中红外光(MIR)之间的电磁波,美国材料检测协会(ASTM)将波长780~2526nm的光谱区定义为近红外光谱区。近红外光谱主要应用两种技术获得:透射光谱技术和反射光谱技术。透射光谱波长一般在780~1l00nm范围内;反射光谱波长在1100~2526nm范围内。近红外光谱区(NIR)是由赫歇尔(Herschel)在1800年发现的。卡尔·诺里斯(KarlNorris)等人首先用近红外光谱区测定谷物中的水分、蛋白质。低谷  相似文献   

7.
相思树聚戊糖含量近红外光谱分析模型的建立及修正   总被引:4,自引:0,他引:4  
建立适应不同产地相思树化学组分含量的近红外光谱分析模型对预测木材化学组分含量具有重要的意义。用常规化学法测量了取自广西78个和福建33个相思树样品的聚戊糖含量,并结合近红外光谱数据用偏最小二乘法建立了广西相思树聚戊糖含量的近红外光谱模型。校正模型的决定系数R2cv为0.947,内部交叉验证均方差RMSECV为0.464,验证模型Rv2al为0.925,RMSEP为0.455。为了扩大模型的适用范围,用福建不同数量样品对该模型进行修正。结果表明:在广西模型的基础上加入一个有代表性的福建样品就能大大降低直接用广西模型预测福建样品的误差。加入3个有代表性的福建样品后能够得到较好的模型。用该模型预测未参加建模的福建样品,预测模型的Rv2al为0.904,RMSEP为0.759。用4组(每组3个样)不同的福建样品修正广西模型,用固定的20个未参与修正广西模型的样品来验证,预测误差略有不同,表明样品的选择在一定程度上影响着修正模型的质量。  相似文献   

8.
利用近红外光谱技术对竹原纤维、竹粘胶纤维和苎麻纤维进行了快速定性鉴别研究.首先扫描3种纤维的近红外光谱,利用化学计量学分析软件,对谱图进行一阶导数预处理,建立不同纤维的光谱数据库,并分别建立竹原纤维、竹粘胶纤维和苎麻纤维的判别模型.利用判别模型,对未知样品进行判别.结果表明,近红外光谱可以在不破坏样品的情况下,可以快速鉴别竹原纤维、竹粘胶纤维和苎麻纤维.  相似文献   

9.
近红外漫反射光谱的主成分分析   总被引:6,自引:1,他引:6  
本文研究了主成分分析的应用,说明了在主成分分析过程中所产生的新变量如何提供新的光谱信息,该信息能改善对原光谱的解释。  相似文献   

10.
土壤水分对近红外光谱表现出强烈的吸收和对土壤有机质含量的预测造成干扰。研究选择41个样本作为校正集和9个样本作为预测集,所有样本做不同含水率(5%,10%,15%和17%)的处理。采用S/B和DS算法分别对预测结果和全光谱进行校正,消除土壤水分的影响。结果得出预测结果偏差减小和模型预测性能得到改善,Rp高于0.89和RMSEP低于0.885%。研究表明S/B和DS算法能有效消除土壤水分的影响和提高土壤有机质预测的准确性。  相似文献   

11.
近红外水分稳健分析模型研究   总被引:2,自引:0,他引:2  
样品水分含量差异对近红外光谱分析模型的稳健性影响最为严重。文章以全籽粒小麦蛋白质含量为研究对象,分析了光谱预处理、有效波数区间的选取和全局校正模型应用对建立近红外水分稳健分析模型的可行性。结果表明,仅通过光谱预处理方法不能减少样品水分差异对预测结果的影响;选择有效波数区间和建立全局校正模型对消除水分的影响均有效,建立全局校正模型的效果最佳。并从理论上初步分析了各种方法的作用机理。  相似文献   

12.
近红外光谱分析建模中存在多变量高维数据处理问题,导致计算量大,不利于过程控制中应用.为此提出利用小波变换压缩近红外光谱数据的算法与准则,并结合柴油十六烷值定量分析研究压缩数据的建模效果.研究表明,经小波方法处理后,变量维数压缩30倍左右,光谱主要信息基本保留,而模型的预测精度和常规预处理方法分析相比有明显提高.光谱数据压缩的同时包含了噪声滤除和基线校正,简化数据处理步骤,有利于NIRS实际应用时提高建模效率.  相似文献   

13.
选用6个品种(埃利奥特、达柔、爱国者、杜克、北蓝、蓝丰)的蓝莓,应用傅里叶变换近红外光谱仪(FTNIR)对蓝莓中总酚含量进行分析,采用主成分分析(PCA)和偏最小二乘回归法(PLS)建立了蓝莓总酚含量近红外数学校正集模型,其相关系数为0.9512、校正集标准偏差(RMSEC)为0.72、预测集标准偏差(RMSEP)为0...  相似文献   

14.
土壤的光谱特征及氮含量的预测研究   总被引:13,自引:9,他引:13  
应用近红外光谱分析技术(NIR)测定土壤参数具有快速、方便的特点.文章分析了不同含水率、不同颗粒大小的土壤样本在不同测试角、不同测试高度对土壤光谱的影响,并得到了不同含水率和不同粒径土壤的含氮量预测模型.研究了这些因素对含氮率测量的影响,分析了NIR技术在田间实地应用预测的可能性.研究表明,光谱仪在距土壤高度为100 mm,测试角为45°时,具有最大的吸光度.土壤粒径和含水率这2个参数明显影响,当粒径在0.5~5 mm变化时,含氮量预测相关系数r为0.81左右,当土壤粒径在<0.25和>5 mm模型的预测能力变差.当土壤样品呈天然潮湿状态时,氮的预测结果较差.而样品干燥以后,预测相关系数较高.为土壤原位光谱测试提供了依据.  相似文献   

15.
用近红外光谱法测定甜菜粕中总糖份和水份的方法研究   总被引:5,自引:0,他引:5  
本文研究了用近红外分光光度计测定甜菜粕中总糖份和水份的分析方法,采用此方法,只需将样品粉碎、混匀、装样、扫描、数十秒就可出结果,分析结果与化学结果相符。方法快速、准确且无药品污染,精密度良好。  相似文献   

16.
近红外光谱分析技术在土壤含水率预测方面具有独特的优势,是一种便捷且有效的方法。卷积神经网络作为高性能的深度学习模型,能够从复杂光谱数据中自主提取有效特征结构进行学习,与传统的浅层学习模型相比具有更强的模型表达能力。将卷积神经网络用于近红外光谱预测土壤含水率,并提出了有效的卷积神经网络光谱回归建模方法,简化了光谱数据的预处理要求,且具有更高的光谱预测精度。首先对不同含水率下土壤样品的光谱反射率数据进行简单的预处理,通过主成分分析减少光谱数据量,并将处理后的光谱数据变换为二维光谱信息矩阵,以适应卷积神经网络特殊的学习结构。然后基于卷积神经网络算法,设置双层卷积和池化结构逐层提取光谱数据的内部特征信息,并采用局部连接和权值共享减少网络参数、提高泛化性能。通过试验优化网络结构和各项参数,最终获得针对土壤光谱数据的卷积神经网络土壤含水率预测模型,并与传统的BP,PLSR和LSSVM模型进行对比实验。结果表明在训练样本达到一定数量时,卷积神经网络的预测精度和回归拟合度均高于三种传统模型。在少量训练样本参与建模的情况下,模型预测表现高于BP神经网络,但略低于PLSR和LSSVM模型。随着参与训练样本量的增加,卷积神经网络的预测精度和回归拟合度也随之稳定提升,达到并显著优于传统模型水平。因此,卷积神经网络能够利用近红外光谱数据对土壤含水率做出有效预测,且在较多样本参与建模时取得更好效果。  相似文献   

17.
基于高光谱技术的土壤水分无损检测   总被引:2,自引:0,他引:2  
利用高光谱成像仪(光谱范围400~1 000 nm)对土壤含水率进行了无损检测。比较了208个土样不同天数下土壤含水率与光谱变化、不同质量含水量光谱的差异;对比分析了不同光谱预处理方法、不同方法提取特征波长、采用多元线性回归(multiple linear regression,MLR)、主成分回归(principal component regression,PCR)与偏最小二乘回归(partial least squares regression,PLSR)建模,优选出最佳模型。结果表明:光谱曲线的反射率随着土壤含水率的增加而减小。当超过田间持水率时,光谱曲线的反射率会随着土壤含水率的增加而增大。对比分析了不同预处理方法,近红外波段优选出单位向量归一化预处理方法。采用无信息变量消除法(UVE)、竞争自适应加权采样(CARS)、β系数法、连续投影算法(SPA)方法提取特征波长为49,30,5和7。为了减少数据冗余,对UVE与CARS提取的特征波长进一步采用SPA方法进行特征提取,UVE+SPA,CARS+SPA提取特征波长数分别为5和8个。在此基础上,利用MLR,PCR和PLSR方法对400~1 000 nm范围的特征波长建立模型,对比分析不同建模效果,优选出β系数提取的特征波长的MLR模型。最优的特征波长为411,440,622,713和790 nm,最优模型的预测相关系数Rp=0.979,预测均方根误差RMSEP为0.763。因此,今后可采用不同波段对土壤含水率进行定量分析。  相似文献   

18.
针对近红外光谱检测中存在的模型传递问题,即在某一测试环境或仪器上建立的定性定量预测模型不适用于其他检测环境或仪器所采集的数据,该研究以土壤有机质为研究对象,采用FIR算法开展了此方面的研究工作。首先,在山西境内不同地方采集了59个壤土土壤样本,选用ASD公司的FieldSpec3光谱检测仪,分两批次对土壤样本进行了近红外光谱检测。第一批测试土样称为“源机样本”为50个,第二批测试土样称为“目标机样本”为9个;然后,随机选取“源机样本”中的41个样本作为校正样本,其余9个样本作为预测样本,采用偏最小二乘(PLS)定量预测方法建立了土壤有机质的定量预测模型,预测样本的预测相关系数为0.961,预测样本标准差(RMSEP)为0.600%,预测样本标准偏差(SEP)为0.597%,说明采用该方法可以很好地预测“源机样本”。当采用上述模型对9个“目标机样本”进行预测时,发现其预测相关系数为负值,表明采用该模型直接对“目标机样本”进行预测是不可行的。最后,采用FIR模型传递算法对“目标机样本”进行了处理,当窗口大小为p=516时预测效果提高,预测相关系数为0.706,RMSEP为0.662%,SEP为0.430%,说明FIR可以实现不同测试条件下获得谱图的传递,实现模型的共享。  相似文献   

19.
方彦 《光谱实验室》2011,28(3):1050-1053
以玉米粉末样品为研究对象,探讨了光谱散射预处理和数学预处理因素对建模效果的影响.结果表明采用一阶导数+SNV+Mean Center建立粗蛋白含量的校正模型效果最佳.  相似文献   

20.
土壤有机质(SOM)是植物生长必需的营养物质,也是土壤属性检测的重要参数。快速、高效地获取土壤有机质信息对精细农业的发展具有重要意义。近红外光谱技术具有快捷、低成本等优势,被广泛应用到土壤有机质的测量中,然而土壤水分在近红外光谱(780~2 500 nm)中具有很强的吸收特性,对土壤有机质的检测形成了一定的干扰。分析了50个土样在不同含水率(约17%,15%,10%,5%和干土)下的近红外吸光度谱图特性,利用水分敏感波段2 210, 1 415和1 929 nm构建了水分修正系数(MDI),并在此基础上对不同含水率土样进行了重构,以消除水分对土壤有机质预测模型的影响。结果如下:(1)经MDI校正重构后的吸光度谱图与对应的干土土样吸光度谱图相近,能较好地反映其干土土样的吸光度谱图特性。(2)采用偏最小二乘(PLS)法建立了干土土样的有机质定量预测模型,并对重构后的不同含水率土样进行了预测,其统计参数分别为:预测相关系数(RP)0.90,预测标准误差(SEP)0.802和预测均方根误差(RMSEP)1.09;与原始未经MDI校正的预测结果相比,相关系数上升了0.032,预测标准误差降低了0.113,预测均方根误差降低了0.25。结果表明,本研究提出的水分校正算法可以降低水分对土壤有机质预测的干扰,提高利用干土土样有机质定量预测模型预测不同含水率土样的精度,可为基于近红外光谱技术的土壤有机质实时测定技术的推广提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号