首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new ratiometric and exclusively selective fluorescent probe N-butyl-4,5-di[N-(phenyl)-2-(amino)-acetamino]-1,8-naphthalimide (1) was designed and synthesized on the basis of the mechanism of internal charge transfer (ICT). The probe 1 showed exclusively selectivity for CuII in the presence of a variety of other metal ions in aqueous ethanol solutions and the binding mode of probe 1 with CuII was 1:1 metal-ligand complex. Fluorescent emission spectra of probe 1 in the presence of CuII showed a 50 nm blue shift, which is from 521 nm to 471 nm. Furthermore, probe 1 shows the same fluorescent change with the CuII in living cells.  相似文献   

2.
3.
A sensitive colorimetric sensor (1) based on 4,5-dinitrobenzene-1,2-diamine was designed and synthesized. Binding of anions such as AcO, F and results in a notable change in the visible region of spectrum (an approximately 90 nm red shift), which can be detected by the ‘naked-eye’. Furthermore, the binding ability was evaluated by UV–vis titration experiments as following: AcO > F >   Cl, Br, I. The nature of the color change of 1 induced by AcO was due to the intramolecular charge transfer (ICT) which was confirmed by X-ray crystal structure and 1H NMR titration spectra.  相似文献   

4.
Shao J  Lin H  Lin H 《Talanta》2008,77(1):273-277
A simple colorimetric and ratiometric fluorescent anion sensor 1, 3,6-dichloro-1,8-dinitrocarbazole, was rationally designed and synthesized on basis of the mechanism of intramolecular charge transfer (ICT). In DMSO solutions of 1, the presence of AcO, F and H2PO4 gave birth to the formation of a 2:1 host-to-guest complex, which was synchronously accompanied by a ‘naked-eye’ color change from light yellow to purple, a red-shift of the absorption spectrum and a blue-shift of the emission spectrum.  相似文献   

5.
As the second most abundant transition-metal ion in the human body, Zn2+ plays crucial roles in many important biological processes; while in the environment, an excessive concentration of Zn2+ may reduce the soil microbial activity resulting in phytotoxic effects. Therefore, developing effective and sensitive detection method for Zn2+ has become crucially important and necessary both in life and environment science. Two new fluorescence probes, 2-((2-hydroxynaphthalen-1-yl)methyleneamino)-3-(1H-imidazol-5-yl) propanoic acid (2) and 2-hydroxy-2-((2-hydroxynaphthalen-1-yl) methyleneamino) acetic acid (3), were easily prepared by a one step reaction between 2-hydroxy-1-naphthaldehyde with histidine and serine, respectively, in ethanol. The optical properties of them were investigated by fluorescence spectra, which displayed specific and sensitive recognition to Zn2+ and especially avoided the interference of Cd2+ when they were tested against a range of physiological and environmentally relevant metal ions in aqueous solution. The responsive mechanism of the two probes to Zn2+ were involved both the CN isomerization and ICT, which were clarified by NBO charge analysis and the HOMO-LUMO energy gap calculation by using B3LYP/6-31G density functional theory.  相似文献   

6.
Zhen-Chang Wen 《Tetrahedron》2004,60(49):11109-11115
A series of the intramolecular charge transfer (ICT) dual fluorescent receptors with anion binding site in the electron acceptor were designed and synthesized. These receptors exhibited dual fluorescence in acetonitrile and the charge transfer (CT) emission energy was found to correlate linearly with the Hammett constant of the substituent existing in the electron acceptor, which is the basis for anion sensing. Dual fluorescence of these receptors was found to be sensitive to the presence of anions such as fluoride and acetate and the receptors can be employed as ratiometric fluorescent sensors for anions.  相似文献   

7.
The ability to image the concentration of transition metals in living cells in real time is important for further understanding of transition metal homeostasis and its involvement in diseases. The goal of this study was to develop a genetically encoded FRET-based sensor for copper(I) based on the copper-induced dimerization of two copper binding domains involved in human copper homeostasis, Atox1 and the fourth domain of ATP7B (WD4). A sensor has been constructed by linking these copper binding domains to donor and acceptor fluorescent protein domains. Energy transfer is observed in the presence of Cu(I), but the Cu(I)-bridged complex is easily disrupted by low molecular weight thiols such as DTT and glutathione. To our surprise, energy transfer is also observed in the presence of very low concentrations of Zn(II) (10(-)(10) M), even in the presence of DTT. Zn(II) is able to form a stable complex by binding to the cysteines present in the conserved MXCXXC motif of the two copper binding domains. Co(II), Cd(II), and Pb(II) also induce an increase in FRET, but other, physiologically relevant metals are not able to mediate an interaction. The Zn(II) binding properties have been tuned by mutation of the copper-binding motif to the zinc-binding consensus sequence MDCXXC found in the zinc transporter ZntA. The present system allows the molecular mechanism of copper and zinc homeostasis to be studied under carefully controlled conditions in solution. It also provides an attractive platform for the further development of genetically encoded FRET-based sensors for Zn(II) and other transition metal ions.  相似文献   

8.
A colorimetric and ratiometric fluorescence anion sensor 1 was designed and synthesized according to site-signalling subunit approach. The sensor exhibited visible color changes from yellow to purple upon addition of the strong basic anions such as acetate. The ratiometric fluorescence changes with significant blue shift about 140 nm were observed during the fluorescence titrations. Such ratiometric fluorescence changes could be due to inhibition of excited-state intramolecular proton transfer (ESIPT). The 1H NMR titrations indicated that the sensor 1 showed deprotonation in presence of large amounts of acetate ion. Therefore, ESIPT was inhibited owing to presence of deprotonation of phenol unit.  相似文献   

9.
A new internal charge transfer probe, NAPH-1, synthesized by incorporating photoemitive naphthalimide core with an acidic imidazolium ring, offers highly selective colorimetric and ratiometric ‘off-on’ signaling for targeting F, while Cl, Br, I, , SCN, AcO, and do not appreciably perturb the photophysical properties of the probe even at relatively higher concentrations than the F. Deprotonation of the imidazolium ring, supported by the 1H NMR and theoritical studies, seems to cause the spectral modulations.  相似文献   

10.
A new fluorescent sensor (1) containing bis(2-pyridylmethyl)amine group as a binding moiety for Pb2+ was developed. Compound 1 shows selective response to Pb2+ over other metal ions in pH 7.0 HEPES buffer solution. The fluorescence intensity enhancement was ascribed to the complex formation between Pb2+ and 1 which blocked the photo-induced electron transfer process.  相似文献   

11.
12.
The 1,8-naphthalimide sensor 1 was developed as a colorimetric and fluorescent sensor for anions. Being the first example of such anion sensors, where the 3-position of the naphthalimide ring is used to incorporate the anion recognition moiety, in this case a trifluromethyl derived aryl urea moiety, the sensors gave rise to significant changes in both the absorption and the emission spectra, which were both red shifted upon interacting with anions. The changes were most pronounced for fluoride, and to a lesser extent for acetate and hydrogen phosphate, in DMSO, making 1 a highly selective sensor for F.  相似文献   

13.
A novel perylenediimide derivative which has a bay region hydroxyl function behaves as a pH-sensitive dye. The deprotonation of the aryl-OH yields a green solution with a λmax of 692 nm and this deprotonated form has strong internal charge transfer characteristics. On reprotonation in acidic solutions, the typical PDI absorbance spectrum is restored. The experimentally determined pKa (7.45) is very close to physiological pH, therefore the most significant changes in color take place in the vicinity of this pH value.  相似文献   

14.
An intramolecular charge transfer (ICT) fluorescent probe, in which the thiourea derivative moiety is linked to the fluorescent 4-(dimethylamino) benzamide, has been designed and synthesized. The ions-selective signaling behaviors of the probe were investigated. Upon the addition of Ag+, an overall emission enhancement of 14-fold was observed. Compound 1 displayed highly selective chelation enhanced fluorescence (CHEF) effect with Ag+ over alkali, alkali earth metal ions and some transition metal ions in aqueous methanol solutions. The prominent selective and efficient fluorescent enhancing behavior could be utilized as a new chemosensing probe for the analysis of Ag+ ion in aqueous environment.  相似文献   

15.
Xue L  Li G  Liu Q  Wang H  Liu C  Ding X  He S  Jiang H 《Inorganic chemistry》2011,50(8):3680-3690
Although cadmium has been recognized as a highly toxic heavy metal and poses many detrimental effects on human health, the Cd(2+)-uptake and nosogenesis mechanisms are still insufficiently understood, mainly because of the lack of facile analytical methods for monitoring changes in the environmental and intracellular Cd(2+) concentrations with high spatial and temporal reliability. To this end, we present the design, synthesis, and photophysical properties of a cadmium sensor, DQCd1 based on the fluorophore 4-isobutoxy-6-(dimethylamino)-8-methoxyquinaldine (model compound 1). Preliminary investigations indicate that 1 could be protonated under neutral media and yield a resonance process over the quinoline fluorophore. Upon excitation at 405 nm, 1 shows a strong fluorescence emission at 554 nm with a quantum yield of 0.17. Similarly, DQCd1 bears properties comparable to its precursor. It exhibits fluorescence emission at 558 nm (Φ(f) = 0.15) originating from the monocationic species under physiological conditions. Coordination with Cd(2+) causes quenching of the emission at 558 nm and simultaneously yields a significant hypsochromic shift of the emission maximum to 495 nm (Φ(f) = 0.11) due to inhibition of the resonance process. Thus, a single-excitation, dual-emission ratiometric measurement with a large blue shift in emission (Δλ = 63 nm) and remarkable changes in the ratio (F(495 nm)/F(558 nm)) of the emission intensity (R/R(0) up to 15-fold) is established. Moreover, the sensor DQCd1 exhibits very high sensitivity for Cd(2+) (K(d) = 41 pM) and excellent selectivity response for Cd(2+) over other heavy- and transition-metal ions and Na(+), K(+), Mg(2+), and Ca(2+) at the millimolar level. Therefore, DQCd1 can act as a ratiometric fluorescent sensor for Cd(2+) through inhibition of the resonance process. Confocal microscopy and cytotoxicity experiments indicate that DQCd1 is cell-permeable and noncytotoxic under our experimental conditions. It can indeed visualize the changes of intracellular Cd(2+) in living cells using dual-emission ratiometry.  相似文献   

16.
Three boronic acid based saccharide sensors with an aniline fluorophore have been prepared. One of the systems (1a) contains an intramolecular boron-nitrogen (B-N) bond and displays fluorescence due to both LE and TICT states. The other two systems (1b and c) have no B-N bond and only show fluorescence due to the LE state.  相似文献   

17.
Tae-Ki Kim 《Tetrahedron letters》2008,49(33):4879-4881
A new fluorescent sensor (1) based on a coumarin was synthesized for the selective detection of homocysteine (Hcy) and cysteine (Cys). The chemosensor has shown a selective response to Hcy or Cys over other various amino acids via a ring formation of thiazinane or thiazolidine. When Hcy or Cys was added, the fluorescent intensity of 1 was completely quenched through a photo-induced electron transfer with the sensitivity of sub-millimolar concentration.  相似文献   

18.
Compound 1 as an electron donor-acceptor compound with N,N-dimethylaniline and quinone units was designed for a highly selective colorimetric determination of thiol-containing amino acids and peptides, by making use of the unique reactivity of thiol towards quinone. Compound 1 shows a strong intramolecular charge transfer (ICT) band around 582 nm; but, it decreased after addition of either cysteine (Cys) or glutathione (GSH). Moreover, the ICT band intensity at 582 nm decreased linearly with the increasing concentrations of Cys or GSH. The interference from other amino acids can be neglected. Therefore, compound 1 can be employed as a selective colorimetric visual chemosensor for thiol-containing amino acids and peptides.  相似文献   

19.
A new Naphthalene derivative with two urea groups, 1,8-bis[N-(o-methoxyphenyl)ureido]naphthalene (BMPUN), was synthesized for detecting Cu(II) ratiometrically. Complexation between urea groups of BMPUN and Cu(II) with high selectivity gives rise to a great red-shift from 380 to 440 nm in the emission spectra. The introduction of electron donating groups is helpful to increase the electron density of the nitrogen atom of urea groups and then enhance the ability of complexation for Cu(II).  相似文献   

20.
In a neutral aqueous environment, a new ratiometric Cd2+ fluorescent sensor 1a can successfully discriminate Cd2+ from Zn2+ by undergoing two different internal charge transfer (ICT) processes, and the high selectivity of sensor 1a to Cd2+ over some other metals was also observed. Moreover, through structure derivation and a series of NMR studies, the unique role of the 2-picolyl group (the part in red in the abstract graphic) in the sensor 1a-Cd2+ complexation was disclosed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号