共查询到17条相似文献,搜索用时 78 毫秒
1.
荒漠植物含水量的光谱特征分析 总被引:3,自引:0,他引:3
用美国SVC的HR-768便携光谱仪现地测定了9种荒漠植物的高光谱并在实验室使用烘干法测定相应植物的含水率,对测定的光谱数据使用ENVI软件去除包络线,运用相关系数法分析植物含水率与反射光谱之间的关系,结果表明:978~1 030 nm波段与植物含水率相关性一般,1 133~1 266 nm波段与植物含水率相关性较好,1 374~1 534 nm波段与植物含水率相关性最好,是表达植物含水率大小的特征波段.对1 374~1 534 nm波段光谱数据进行聚类分析,可将测定的植物划分为含水率较高(>70%)、中等(50%~70%)、较低(<50%)3个等级.以上研究揭示了荒漠植物含水量大小和光谱数据之间的关系,为荒漠区生境分析和利用遥感数据进行荒漠植物监测提供了参考依据. 相似文献
2.
荒漠植物长势、变化、演替是反映荒漠地区生境状况的重要指标。目前荒漠植物监测与光谱研究多基于定时采样数据,波谱时序动态研究相对薄弱。荒漠植物光谱因受时间尺度影响,常引起辨识误差。将荒漠植物中最具代表性的灌木--柽柳、白刺、梭梭作为样本,旨在揭示三种荒漠植物光谱生长期变化规律及种间动态分异特征,为荒漠植被空间遥感辨析奠定基础。实验选取旺盛植株采集生长期内(5月-10月份)光谱数据,对不同月份植物光谱曲线分析比较并剖析机理,得出荒漠植物生长期光谱特征变化规律及其物候现象对应波谱表现。结论指出:(1)三种荒漠植物反射率曲线总体特征均符合绿色植被波谱规律,可观察到较明显的12峰谷分布,红边斜率与面积从大到小分别为:梭梭、柽柳、白刺。其光谱曲线峰谷幅度值相对较小,且变化较快,红边参数表现活跃期分别为柽柳8月、白刺10月、梭梭9月。(2)荒漠植物的光谱变化与植物本身物候特征、气候变化植物响应密切相关。光谱特征在可见光波段与营养期、花期、落叶期有一定响应关系;近红外波段与结实期、休眠期、降雨情况相关;短波红外波段与营养期、落叶期、降雨状况呈现关联性。(3)7月份三种植物的生长状况差异光谱曲线表现为:衰败植株地物光谱反射率可见光、短波红外波段呈高反射,近红外波段反射减弱,趋近于土壤光谱反射率曲线。 相似文献
3.
地面实测地物光谱可提供细致的光谱信息,表现同种地物不同理化特性和不同种类地物光谱的微小差异,使利用光谱进行地物识别成为可能。使用美国HR-768型地物光谱仪,在塔里木河下游和吐鲁番沙漠植物园实测胡杨、柽柳、梭梭和沙拐枣高光谱数据,利用包络线去除、一阶微分和二阶微分法对原始光谱进行变换处理,使用马氏距离法确定所测树种原始光谱和变换光谱的差异显著波段,利用逐步判别法检验所选差异波段的识别效果。结果表明:马氏距离法可准确确定树种识别的最佳波段,且上述4树种光谱识别波段大多位于近红外区。原始光谱、包络线去除、一阶微分和二阶微分四种光谱对4树种的识别精度分别为:85%,93.8%,92.4%和95.5%;可见,原始光谱经变换处理可提高树种的识别精度。但不同研究对象、不同光谱处理方法,提高识别精度的效率不同。研究结果将为大尺度高光谱遥感影像用于荒漠植物分类与生境监测和评价提供依据。 相似文献
4.
叶片茸毛对叶片反射光谱及高光谱植被指数的影响研究 总被引:1,自引:0,他引:1
很多高光谱植被指数被用于对植被的生化物质含量进行非破坏性的估计与反演。由于这些指数都是利用不同波段的反射率计算而得到的,因而对叶片反射具有很大影响的茸毛等叶表结构对这些植被指数的反演精度的影响不容忽视。本研究发现去茸毛处理使得在400~1 000nm范围的的光谱反射都有所下降,但在各个波段的变化并不均匀。通过对比39个现有的高光谱植被指数在经过去茸毛处理前后的变化,发现一些只单独利用可见光或者近红外波段的高光谱植被指数,如CTR1:R695/R420,D740/D720,WBI:R900/R970,R860/(R550×R708)以及红边指数(REP)比大多数既使用可见光又使用近红外波段的高光谱植被指数受茸毛变化影响小,它们对茸毛的低敏感性可以使其在进行植被生化物质反演时更具有普适性。 相似文献
5.
通过野外定点光谱采样,从端元尺度对天山北坡四种常见的盐生植物芨芨草、苦豆子、樟味藜、骆驼刺进行了光谱特征分析和种类识别。结果表明:从CARI和SIPI两个常用的叶绿素高光谱指数来看,骆驼刺的叶绿素含量和类胡萝卜素含量均较高,苦豆子虽然生长旺盛,由于受到光谱中花的因素影响,这两个指数值较低。苦豆子株冠郁闭度较高,其NDVI值高于其他三种植物。苦豆子和樟味藜的光谱位置参数较稳定,而芨芨草和骆驼刺则既存在BEP红移,也存在REP蓝移,红边和蓝边变化幅度较大。生长旺季中不同植物端元光谱曲线之间差异较小,存在明显的混合光谱现象,利用遥感常用的红/近红外特征空间难以准确区分樟味藜和骆驼刺。采用逐步多元判别分析,筛选出Rn,REP,Rg,MSAVI和CARI作为判别指标构建判别方程,芨芨草和樟味藜可以100%被识别,四种植物的判别总精度达92%以上。 相似文献
6.
茶叶种类识别和等级划分的实践意义重大。成像光谱技术较传统检测、识别手段具有图谱合一及快速无损等优势。获取了君山银针、无锡白茶、信阳毛尖、和六安瓜片4种外观相近的线条形茶叶的短波红外(1 000~2 500 nm)高光谱图像。首先利用最小噪声分数(MNF)和非参数权重特征提取(NWFE)将高维高光谱数据投影到低维子空间,然后用单因素方差分析(ANOVA)重新评估投影特征的可分性并选择对茶叶识别较为有效子空间,同时考虑到“光谱和特征”能较好地表征物质反射属性,将选择的投影子空间MNF1,MNF2,MNF4,MNF6,MNF8,NWFE1,NWFE2,及“光谱和特征”一起作为光谱特征集并用SVM分类器获得光谱特征下像元的分类结果。另一方面,利用图像本质分解(IID)算法将高光谱图像的光谱分解为自身反射光谱R与阴影成分S;在均质性较优的光谱范围(1 006~1 900 nm)按照光谱距离对R求取梯度图像并用分水岭算法实现了图像空间分割,得到空间相关度较高的分割子块。最后,将像元分类和图像分割结果进行融合,具体:在每个图像分割子块中,重新统计像元分类结果并按照最大投票法对整个子块的类别进行赋值,也即联合光谱-空间信息的茶叶识别模型。结果表明,构建的模型对4种茶叶的识别结果较为满意,在仅为约1%水平的训练样本下,茶叶的总体分类精度达94.3%,Kappa系数为0.92。该模型还较好地克服了茶叶光谱的“同物异谱”现象,并期待方法对实践生产具有指导意义。 相似文献
7.
棉花冠层水分含量估算的高光谱指数研究 总被引:1,自引:0,他引:1
适宜的光谱指数对于地表参数高光谱诊断模型的估算精度具有决定性作用。通过不同棉花冠层水分含量表征参数冠层等效水厚度EWTcanopy, 植株含水量VWC及其对应的光谱数据分析,构建350~2 500 nm范围内所有波段两两组合的比值指数RVI和归一化指数NDVI,分析水分含量表征参数与所有指数之间的相关关系,筛选最大相关系数对应的指数作为最佳水分指数,利用新指数构建水分含量表征参数的估算模型,并与已知的各种水分指数估算精度进行比较。结果表明:新建比值指数R1 475/R1 424及其归一化指数(R1 475-R1 424)/(R1 475+R1 424)对EWTcanopy的估算效果最佳,由其得到的估算值与实测值之间的相关系数r值达到0.849;已知指数(R835-R1 650)/(R835+R1 650)对VWC的估算效果最佳,由其得到估算值与实测值之间的相关系数r值为0.805。 相似文献
8.
晚播条件下基于高光谱的小麦叶面积指数估算方法 总被引:1,自引:0,他引:1
利用高光谱遥感技术,分析晚播条件下小麦叶片与冠层模式光谱特征和叶面积指数(LAI)的变化规律,建立了适用于晚播小麦的叶面积指数估算方法。研究结果表明:(1)从红光和蓝紫光420~663 nm波段提取的叶绿素光谱反射率植被指数(CSRVI)与旗叶SPAD值做相关性分析,结果表明正常播期和晚播处理在叶片模式的相关系数分别为0.963*和0.997**,达显著和极显著水平。(2)利用相关性分析,得出两个播期处理的LAI与SPAD值相关系数分别是0.847*和0.813*,均达到显著水平。SPAD值与LAI及CSRVI指数均具有相关性,可以用CSRVI指数建立LAI的估算模型。(3)对叶片模式和冠层模式光谱曲线特征分析得出,叶片模式中在680~780 nm处的反射率呈现陡升趋势,在可见光波段的446和680 nm和近红外波段的1 440和1 925 nm处各有两个明显的吸收波谷,在540~600,1 660和2 210 nm波段处有两个明显的反射波峰;三种冠层模式中60°模式下的光谱反射率整体表现为最高。(4)将各波段反射率与叶面积指数做相关性分析得出在可见光波段范围内,光谱反射率与LAI总体呈现负相关性,500~600 nm处有一个波峰。(5)将三种冠层模式下(仪器入射角度分别与地面呈30°,60°和90°夹角)的等效植被指数与LAI做相关性分析得出:60°冠层模式下八种植被指数与正常播期LAI的相关性均未达显著水平,比值植被指数(RVI)、归一化植被指数(NDVI)、增强型植被指数(EVI)、再次归一化植被指数(RDVI)、土壤调整植被指数(SAVI)、修改型土壤调整植被指数(MSAVI)的等六种植被指数与晚播条件下的LAI具有显著和极显著相关关系;90°冠层模式下CSRVI指数与正常播期处理的LAI具有显著相关关系,NDVI指数与晚播处理的LAI具有显著相关关系;30°冠层模式下的八种植被指数与两播期处理的LAI的相关性均未达显著水平。综合分析CSRVI指数、NDVI指数的相关性最高,这两种指数最具有估算LAI的潜力。(6)通过三种冠层模式所计算的植被指数估算LAI模型,结果表明,正常播期条件下,其最佳估算模型是90°冠层模式CSRVI指数所建立的线性模型Y=-7.873 6+6.223 8X;晚播条件下的最佳模型是60°冠层模式RDVI指数所建立的幂函数模型Y=30 221 333.33X17.679 1,两个模型的决定系数R2分别为0.950*和0.974**。研究表明试验中所提取的CSRVI指数能够反映旗叶叶绿素含量,可以通过光谱仪器的叶片模式对小麦生育期内叶绿素含量进行监测;通过冠层模式计算的CSRVI指数和RDVI指数所建立的LAI估算模型可以对小麦的LAI进行无损害观察。 相似文献
9.
基于高光谱成像技术应用光谱及纹理特征识别柑橘黄龙病 总被引:2,自引:0,他引:2
讨论了基于高光谱成像技术光谱及纹理特征在识别早期柑橘黄龙病中的应用。使用一套近地高光谱成像系统采集了176枚柑橘叶片的高光谱图像作为实验样品,其中健康叶片60枚,黄龙病叶片60枚,缺锌叶片56枚。手工选取每幅叶片高光谱图像的病斑位置作为样品感兴趣区域(regions of interest, ROI),计算其平均光谱反射率,并以此作为样品的反射光谱,光谱范围为396~1 010 nm。样品光谱分别经过主成分分析(PCA)及连续投影算法(SPA)进行数据降维,再结合最小二乘支持向量机(LS-SVM)分类器建立分类模型。相比原始光谱,由PCA选取的前四个主成分及SPA选取的一组最佳波长组合(630.4,679.4,749.4和899.9 nm)建立的模型拥有更好的分类识别能力,其对三类柑橘叶片平均预测准确率分别为89.7%和87.4%。同时,从被选四个波长的每幅灰度图像中提取6个灰度直方图的纹理特征以及9个灰度共生矩阵的纹理特征再次构建分类模型。经SPA优选的10个纹理特征值进一步提高了分类效果,对三类柑橘叶片的识别正确率达到了100%,93.3%和92.9%。实验结果表明,同时包含光谱信息及空间纹理信息的高光谱图像在柑橘黄龙病的识别中显示了很大的潜力。 相似文献
10.
11.
重金属铜胁迫下玉米的光谱特征及监测研究 总被引:1,自引:0,他引:1
农作物重金属污染监测是当今高光谱遥感研究的重要内容之一,旨在设计一种新的窄带植被指数,以实现不同培育期的两种玉米品种的重金属铜胁迫监测。研究设计了不同浓度的铜污染实验,采用SVCHR-1024I型高性能地物光谱仪测量不同浓度铜离子(Cu2+)胁迫下玉米叶片的光谱反射率,并同步获取了玉米叶片中Cu2+含量数据。首先,对玉米叶片原始光谱数据进行一阶差分处理,并计算一阶差分反射率与叶片中Cu2+含量的相关系数(r),筛选对铜胁迫敏感的波段。计算结果显示,489~497,632和677 nm波长附近的一阶差分反射率与叶片中Cu2+含量显著相关,可将其视为敏感波段。其次,根据以上3个敏感波段,建立基于一阶差分反射率的铜胁迫植被指数(dVI)。对所有可能的dVIs和Cu2+含量进行一元回归分析,并采用决定系数(R2)和均方根误差(RMSE)对回归结果进行评估,以筛选最佳指数。最后,采用不同生长年份的玉米实验数据对敏感波段的稳定性及dVI的适用性进行了验证评估;同时,通过与归一化植被指数(NDVI)、红边叶绿素指数(CIred-edge)、红边位置(REP)、光化学反射指数(PRI)等常规重金属胁迫植被指数进行应用比较,证明dVI更具有优越性。结果表明:一阶差分处理后,在450~500,630~680和677 nm波长处的叶片反射率与Cu2+含量的相关系数明显增大。基于一阶差分反射率的特征波段具有稳定性,对于不同生长年份的玉米叶片数据,特征波段的波长位置不变。一元回归分析结果表明,结合497,632和677 nm波长的一阶差分反射率的指数与Cu2+含量具有显著的相关性,对于不同生长年份的2种玉米品种数据集,R2都高达0.75以上。另外,与常规植被指数比较结果表明,该研究所提出的dVI具有更好的鲁棒性及有效性,可为冠层尺度的重金属胁迫监测提供理论基础。 相似文献
12.
高寒草甸毒草化是青藏高原草地生态系统面临的主要问题之一。高寒草甸毒草分类技术对草地群落的变化具有及时监测和科学防控的重要意义。近年来,毒草种类及危害面积急剧增加,传统人工实地调查耗时费力、调查结果代表性差。同时毒草在地域分布上具有一定的差异性,依靠人力难以实现大面积调查。高光谱遥感技术凭借分辨率高、波段多、图谱合一等特点,在毒草精细分类中表现出巨大的优势,可满足快速、准确、大尺度获取毒草发生面积的需求。已有学者对草地植物的光谱反射特征开展了研究,证明采用植物光谱反射特征可有效区分其种类。但是,目前尚缺乏针对草地有毒植物光谱特征变量的筛选及构建基于毒草光谱特征的预测分类模型。本研究利用SOC710VP近红外高光谱成像仪,在甘肃省天祝县和玛曲县境内高寒草甸上采集黄花棘豆(Oxytropis ochrocephala)、宽苞棘豆(O latibracteata)、多枝黄芪(Astragalus polycladus)、长毛风毛菊(Saussurea hieracioides)、黄帚橐吾(Ligularia virgaurea)、乳白香青(Anaphalis lactea)、葵花大蓟(Cirsium souliei)、瑞香狼毒(Stellera chamaejasme)、密花香薷(Elsholtzia densa)、露蕊乌头(Aconitum gymnandrum)、碎米蕨叶马先蒿(Pedicularis cheilanrthifolia)11种主要毒草野外光谱数据,采用Savitzky-Golay卷积平滑算法(SG)对原始光谱值进行去噪,使用一阶微分导数(FD)开展光谱特征分析,利用典型判别分析(CDA)对选用的16种光谱特征变量标准化得分系数绝对值进行排序,然后从大到小分别添加到随机森林(RF)、支持向量机-径向核函数(SVM-RBF)、k最邻近分类(KNN)、朴素贝叶斯(NB)、决策树(CART)5种算法中构建分类模型并筛选最佳特征变量,使用混淆矩阵评价分类效果。结果表明:(1)16个光谱特征变量典型判别分析(CDA)总体分类精度为92.34%,R2=0.89;(2)筛选出最佳分类光谱特征变量为绿峰幅值(Mg)、蓝边面积(Ab)、红边幅值(Mre)、红边面积(Are)、红边位置(Lre)、NDVI2、RVI1;(3)将筛选出的7个光谱特征变量用于毒草分类,结果支持向量机-径向核函数(SVM-RBF)分类效果最好,精度达96.45%。 相似文献
13.
基于光谱分析的果树树种辨识研究 总被引:1,自引:0,他引:1
利用冠层光谱反射率数据(Rλ),对处于果实成熟期的七种挂果果树的树种进行了辨识研究。通过光谱数据重采样、植被指数求算等相关数据处理,比较了六种卫星传感器与四种植被指数对果树树种的辨识效能,并在优选数据形式、优化模型参数的基础上,建立了辨识果树树种的BP神经网络模型。主要结论为:(1)六种卫星传感器辨识果树树种的效能由强到弱的排列顺序为:MODIS,ASTER,ETM+,HRG,QUICKBIRD,IKONOS;(2)在四种植被指数中,RVI对果树树种的辨识效能最强,其次是NDVI,SAVI与DVI的辨识效能相对较弱;(3)用MODIS或ETM+传感器的近红外通道与红光通道上的反射率数据,求算的RVI与NDVI对果树树种的辨识效能相对较强;(4)在Rλ及其22种变换数据中,波长间隔设为9 nm的d1[log(1/Rλ)] ,是建立BP神经网络模型的首选数据形式;(5)利用波长间隔设为9 nm的d1[log(1/Rλ)] 这一数据形式,建立了辨识果树树种的3层BP神经网络模型。 相似文献
14.
土壤受重金属污染后,会影响农作物及食品安全,危及人体健康,因此寻找快速、高效甄测土壤重金属污染信息的方法尤为关键。传统化学分析方法存在过程繁杂、费时耗力等缺点,而高光谱遥感因光谱分辨率高、信息量大、快速无损等特点在环境监测等应用方面优势明显。由于电磁遥感信号反射、辐射过程复杂,通过仪器获取的土壤高光谱数据难以直接解析出重金属污染信息,因而,研究并寻求一种能够有效挖掘土壤重金属污染信息的方法对高光谱遥感监测污染意义重大。不同浓度铜(Cu)污染会使土壤理化性质改变,引发土壤光谱产生微弱变化,该研究目的是对Cu污染土壤光谱的特征及弱差信息进行识别、提取与分析,进而挖掘光谱中的重金属污染信息。采用包络线去除(CR)对光谱进行预处理,通过定义局部极大值均值(LMM)与半波高(HWH),结合时频分析的短时傅里叶变换(STFT)及能量谱密度(PSD),构建LH-PSD甄测模型。通过模型对极相似土壤光谱进行处理,所获PSD分布图使光谱间的微弱差异可视化显现,并显著区分了相似光谱,验证了模型对光谱特征及弱差信息的甄别能力和有效性。同时应用该模型,对不同Cu污染梯度的土壤实验光谱进行重金属污染信息的提取与分析,研究结果表明,LH-PSD甄测模型中,LMM与HWH可有效提取光谱间差异特征并以阶梯状显现。经模型处理后得到的可视化PSD分布图能直观定性判别土壤是否受重金属Cu污染,即当土壤受重金属Cu污染后,相同采样频数下,在频率为100与600 Hz附近PSD分布会出现明显空缺分离,随着Cu污染浓度的增加,在100~600 Hz之间PSD的分布呈逐渐稀疏态势。能量值E可定量化监测土壤Cu污染程度,即随着土壤中Cu污染浓度的增加,E值呈下降趋势,且与Cu含量的相关系数达到-0.910 5,显著相关。为检验模型的可靠性,研究结合栽种玉米作物的土壤光谱,经LH-PSD甄测模型对其进行分析,所得可视化的PSD分布图结果与实验分析中基本一致,且能量值E的监测结果与土壤中Cu含量相关系数达到-0.973 9,相关性显著,验证了模型的可靠性。因此,LH-PSD甄测模型实现了对土壤光谱从光谱域到时频域的甄析,为深度挖掘重金属污染的光谱特征及弱差信息提供一种新思路。 相似文献
15.
传统的与光谱反射率匹配的矿物填图方法受图像质量、大气及环境背景等因素影响较为明显,矿物识别效果较差。针对上述问题提出一种基于多类型光谱特征参数匹配的矿物信息识别方法,综合利用多种光谱特征参数在大气及环境背景变化中的相对稳定性特点,实现矿物信息的高精度识别。选取美国内华达州Cuprite矿区AVIRIS机载可见-红外光谱成像仪高光谱数据,以USGS美国地质调查局波谱库中的矿物波数为参照光谱,分别计算AVIRIS影像和USGS波谱库中典型矿物的光谱特征参数,在对多种光谱特征参数综合分析的基础上,构建Cuprite矿区矿物识别模型,进行矿物填图实验。最后使用Clark等在该地区的矿物填图结果数据,对实验结果进行了验证,结果表明:该方法矿物识别结果与Clark等的填图结果吻合度高,整体矿物识别精度达到78.96%。 相似文献
16.
以新疆典型露天煤矿准东五彩湾开采区为研究区,选定并测定干旱煤矿区三种典型植物: 梭梭、假木贼和琵琶柴的冠层光谱,分析植被对煤炭粉尘的波谱响应,旨在研究露天煤炭开采引起的煤炭粉尘扩散对植被生长的影响.研究基于植被冠层实测光谱,提取19种常用的植物色素指数和水分指数,通过不同指数同煤炭粉尘降尘量的相关性的研究,探讨植被生长受损的关键参数及对煤炭粉尘影响敏感的指示性植被,为干旱煤矿区植被受损监测提供评价依据。结果表明: 在干旱露天煤矿区植被受到煤炭粉尘污染的过程中,从植被指数的角度可以间接确定,随着煤炭粉尘量的增加,叶绿素以及水分的含量会减少,而类胡萝卜素的含量会增加;植被体内的水分和叶绿素含量对煤炭粉尘量的响应较为敏感;在指示叶绿素(包括叶绿素a、叶绿素b和叶绿素)的指数中色素归一化指数b(PSNDb)敏感性较强;在指示类胡萝卜素的指数中结构不敏感色素指数(SIPI)敏感性较强;在指示水分的指数中植被水分指数(PWI)敏感性较强;三种植物中梭梭对煤炭粉尘量的增加较为敏感。 相似文献
17.
光谱指数的植物叶片叶绿素含量估算模型 总被引:4,自引:0,他引:4
叶片叶绿素能够有效监测植被的生长状况,利用光谱指数反演植被叶绿素含量是目前的通用方法。实测了盐生植物光谱反射率和叶片叶绿素含量。对SPAD值进行变换,对比Pearson与VIP方法探讨盐生植被叶片叶绿素含量与植被指数的相关性并进行精度验证,从中选出最佳拟合模型。研究表明,通过对Pearson与VIP相关性分析,最终选定VIP方法建立植被指数的叶片叶绿素估算模型,NDVI705,ARVI,CIred edge,PRI,VARI,PSRI和NPCI的VIP值均大于0.8,因此选定这七个植被指数为最优植被指数;预测结果显示,所有模型的相关性都在0.7以上,预测值与实测值相关性最好的是经过倒数变换的SPAD值,R=0.816,RMSE=0.007。基于VIP方法的反演模型能较好地估算研究区植被叶绿素含量,该方法为植物叶绿素含量诊断的实际应用提供了重要的理论依据和技术支持。 相似文献