共查询到19条相似文献,搜索用时 78 毫秒
1.
便携式水果内部品质近红外检测仪研究进展 总被引:8,自引:0,他引:8
介绍了水果内部品质近红外光无损检测原理,描述了便携式水果内部品质近红外检测仪检测流程,对比分析了几款商品化的便携式水果内部品质近红外检测仪性能特点,总结了国内外最新研究进展,并展望了便携式水果内部品质近红外检测仪的发展趋势. 相似文献
2.
近红外光谱分析技术在水果品质无损检测上的应用 总被引:1,自引:0,他引:1
近红外光谱分析技术具有快速、非破坏性、低成本及同时测定多种成分等特点,在很多领域得到广泛应用。本文简介了近红外光谱技术的检测原理,指出其检测优点和不足。综述了国内外将近红外光谱技术应用于水果品质无损检测方面的研究进展,并对利用近红外光谱技术进行水果品质无损检测的研究前景进行了展望。 相似文献
3.
可见/近红外光谱漫透射技术检测西瓜坚实度的研究 总被引:3,自引:3,他引:3
西瓜是一种广受世界各国消费者喜爱的水果,坚实度是西瓜的一个重要品质指标,文章利用可见/近红外漫透射光谱技术进行了西瓜坚实度(FM)的无损检测研究。采用偏最小二乘法(PLS)和主成分回归法(PCR)建立了FM与漫透射光谱的无损检测数学模型,对比分析了不同光谱预处理方法(原始光谱%T,一阶微分处理光谱D1(%T ),二阶微分处理光谱D2(%T )以及光谱的Savitsky-Golay法滤波)对模型预测性能的影响。根据模型相关系数(r)及预测平方根标准偏差(RMSEP)进行了不同模型的预测性能对比,结果表明:光谱经二阶微分处理并使用Savitsky-Golay法滤波后,采用PLS法可以得到最好的FM建模结果(r=0.974,RMSEP=0.589 N)。研究表明:应用可见/近红外漫透射光谱技术检测西瓜的坚实度是可行的,为今后快速无损评价大果形厚果皮类水果坚实度提供了理论依据。 相似文献
4.
湿度对近红外光谱检测的影响 总被引:1,自引:1,他引:1
光谱的检测过程会受诸如温度等很多条件的影响。本课题的目的在于研究在近红外检测过程中,环境湿度的变化对苹果检测结果的影响。建立一个自制湿度可控箱,通过改变箱内小环境的湿度值,对每个水果在40%~80%的湿度范围内每隔10%进行光谱采集。每个最终光谱是由水果的扫描光谱减去背景光谱获得的,由于不确定湿度随水果和背景的分别影响,光谱试验分两组进行:在不同的湿度下均采集背景和水果的光谱值(组1)和仅在40%的湿度值下采集背景(组2)。由20个苹果的样品集组成40组平行试验数据,运用单因素方差分析和马氏距离等处理方法进行分析。结果显示,无论在不同的湿度值下采集光谱和背景还是仅采集一个背景,其湿度值对近红外光谱的影响都不显著。 相似文献
5.
在种鸡蛋孵化过程中,部分种蛋由于未受精不能正常出雏,不但会造成大量浪费,还有可能引起霉菌感染其他种蛋,利用可见/近红外透射光谱分析技术可以对种鸡蛋中的受精蛋和无精蛋进行检测。为研究孵化初期无精蛋最佳的判别时间,本文通过对孵化环境下种鸡蛋品质随时间变化的研究,最终发现在孵化24h内的种鸡蛋品质还在新鲜状态,在72h后的种鸡蛋品质变为不可食用级别,最终发现36h内是最佳的判别时间。研制了基于可见/近红外透射光谱的静态采集系统,并使用该系统进行了光谱采集。对比同一品种不同样品及不同品种的光谱建模效果,剔除了由蛋黄与蛋壳颜色造成的样本光谱差异区域,选取的有效光谱波段为355~590和670~1 025nm。采用主成分分析法进行预处理,通过不同时间、不同主成分数建模效果的比较,确定最佳的主成分数。同时采用多元散射校正、附加散射校正、导数校正与主成分分析的光谱预处理方法在不同的建模方法下进行对比,并考虑到实际应用与最终的生产效益,建立了有效的判别模型。最佳判别模型为使用24h时采集光谱且采用主成分分析法进行数据预处理并使用Fisher算法建立的模型,判别准确率能达到87.18%。该研究为早期受精蛋与无精蛋的无损伤在线鉴别提供了一种新的方法。 相似文献
6.
应用便携式近红外光谱仪采集320份生鲜猪肉在近红外光谱中波区的光谱信息,采用不同优化方法建立猪肉胆固醇预测模型,并对异常样品的剔除及组合预处理方法对模型性能的改善进行了分析。研究表明:通过对异常值的二次剔除,并使用SG一阶导数(savitzky-golay first derivative, SG 1stD)、SG平滑(savitzky-golay smoothing, SGS)和正交信号校正(OSC)的组合预处理方法,可获得最佳生鲜猪肉胆固醇预测模型,其参数如下:校正集相关系数(Rc)=0.9137,校正标准差(standard error of calibration, SEC)=2.5607,验证集相关系数(Rp)=0.656 7,预测标准差(standard error of prediction, SEP)=4.985 5,主因子数(principal factor, PF)=4,范围误差比(ratio of performance to standard deviation, RPD)=2.5032,相对预测标准差(relative standard error of prediction, RSEP)=8.625 4%,SEP/SEC=1.946 8,说明模型在近红外光谱中波区对猪肉胆固醇的分辨能力和预测准确度较好,通过向校正集中补充代表性样品可使模型稳健性进一步改善。对检验集样品预测值(prediction value, PV)与参比值(reference value, RV)的t检验显示二者之间无显著性差异(p>0.05),检验集样品总体预测准确率为62.5%,其中50~70 mg·(100 g)-1区段的局部预测准确率达到91.7%,可以用于生鲜猪肉胆固醇浓度的在线快速初步定量分析。该研究将便携式近红外光谱用于在近红外中波区对生鲜猪肉及肉制品中胆固醇浓度的分析和检测,通过进一步的研究和改进,可将其应用于产品的原料分级、品质和过程控制及市售产品的抽检等。 相似文献
7.
中红外光谱以及近红外光谱在现代分析化学中有重要的地位,是人类认识物质结构、功能、成分以及含量的重要途径。小杂粮泛指生育期短、种植面积少、种植地区和种植方法特殊,有特种用途的多种粮豆,其特点是小、少、特、杂。小杂粮营养丰富,既是传统口粮,又是保健食品资源。随着人民生活水平的提高和膳食结构的改善,小杂粮作为药食同源的新型食品资源,在现代绿色保健食品中占有重要地位。对小杂粮进行品质检测可为小杂粮生物活性物质研究、品质分级、小杂粮育种、产地溯源与真伪鉴别等方面提供可靠的数据支撑。按照麦类小杂粮及豆类小杂粮分类,对国内近30年来小杂粮品质检测有关文献加以综述。研究表明,麦类小杂粮品质检测文献更多,约占文献数量的2/3左右,且以近红外光谱技术应用居多;豆类小杂粮品质检测文献相对较少,约占文献数量的1/3左右,且以中红外光谱技术应用居多。中红外光谱、近红外光谱在小杂粮品质检测分析方面有诸多重要应用。其中,中红外光谱更多应用于小杂粮中活性物质以及小杂粮加工过程的表征,而近红外光谱则更多应用于小杂粮中粗蛋白、粗脂肪、水分等主要品质指标的定量分析检测,可为小杂粮品质监测、科学育种提供高效的数据来源。近年来,随着化学计量学的发展和计算机技术的进步,近红外光谱不再局限于小杂粮品质指标定量分析,而且还被应用于小杂粮产地溯源等领域,亦取得了良好的效果。最后对中红外光谱、近红外光谱在小杂粮品质无损分析检测方面做出了展望。 相似文献
8.
燕麦干草品质的近红外光谱定量分析 总被引:1,自引:0,他引:1
应用近红外漫反射光谱(NIRS)分析技术,采用偏最小二乘回归法(PLS),建立了适合不同品种类型和不同生长发育时期的NIRS测定燕麦全株干草的粗蛋白(Crude Protein,CP)、秸秆中性洗涤纤维(Neutral Detergent Fiber,NDF)和酸性洗涤纤维(Acid Detergent Fiber,ADF)含量的稳定校正模型。结果表明,采用二阶导数(2st Deriv)+平滑处理(Norris)、多元散射校正(MSC)+二阶导数(2st Deriv)+平滑处理(Norris)、多元散射校正(MSC),分析谱区为9 668~4 518,9 550~5 543,8 943~4 042 cm-1建立粗蛋白、中性洗涤纤维和酸性洗涤纤维的校正模型,其校正和预测效果最佳。其中CP与NDF的建标决定系数(r2cal)和交叉检验的决定系数(R2cv)均在0.95以上,各项误差均小于3%,RPD值均大于3,逼近了化学分析的精确度,具有较好的预测效果。ADF的建模效果较CP与NDF差,其建标决定系数和交叉检验决定系数分别为0.912 0,0.855 3,建标误差(RMSEC)和检验误差(RMSECV)分别为2.33%,2.62%,接近了化学分析的精确度,且RPD值大于2.5,说明所建的ADF模型也可用于近红外预测。 相似文献
9.
近红外光谱分析技术在蔬菜品质无损检测中的应用研究进展 总被引:3,自引:3,他引:3
蔬菜的无损检测技术包括利用其电学特性、光学特性、声波振动特性以及核磁共振技术、机器视觉技术、电子鼻技术和撞击技术等,其中应用最广泛、最成功的检测方法是光学方法。近红外光谱分析技术因分析速度快、效率高、成本低、重现性好,无需样品备制,无污染等特点,已成为一种快速、无损的现代分析技术,在很多领域得到广泛应用。文章介绍了国内外运用近红外光谱分析技术进行蔬菜品质无损检测的研究情况,分析了该技术应用于蔬菜品质检测时尚存在的问题和今后的研究方向。提出因蔬菜多样性和易腐变性等特点,需要加快研制近红外自动分析设备,以提高蔬菜品质检测的速度。指出结合核磁共振技术、图像技术等进行蔬菜品质的无损检测是未来发展的趋势。 相似文献
10.
基于便携式短波近红外光谱技术检测了土壤总氮含量。采集浙江省文城地区农田土壤样本243个,将土壤样本分为三组,一组未经过粉碎、过筛等处理,一组做过2 mm筛处理,一组过0.5 mm筛过处理,采用usb4000便携式光谱获取土壤光谱数据,结合(savitzky-golay, SG)平滑算法,波长压缩算法和小波变换对原始数据进行预处理,然后采用竞争性自适应重加权、随机青蛙和连续投影算法进行特征波长选择。基于全光谱建立了偏最小二乘回归和基于特征波长建立了极限学习机和LS-SVM模型。结果表明过筛处理后的样本模型结果优于未过筛的样本模型结果,过0.5 mm筛处理的土壤样本模型预测结果略优于过2 mm筛处理的土壤样本模型预测结果,最优预测集的决定系数为0.63,预测均方根误差为0.007 9,剩余预测偏差为1.58。表明便携式仪器检测土壤总氮含量,经过过筛处理的土壤样品检测结果优于未过筛土壤样品检测结果,建议土壤样品检测总氮含量时需经过过筛处理,这样得到的结果较为理想,在此基础上采用性能较好的光谱仪器采集数据,以减小原始光谱噪声。 相似文献
11.
在进出口检测检疫部门,血液制品的检验与分类是件重要且复杂的事情。对于全血样品,开放式的采集可能带来污染,且血样中的致病因子可能会对检测人员造成危害。因此急需非接触式的全血分类鉴别方法。常用流式细胞术中的光谱方法由于需要对血细胞进行采样,所以无法在非接触全血分类鉴定中采用。红外吸收光谱学是一种可用来分析样品分子结构和化学键的技术,可以在不直接接触样品的情况下对样品进行探测。为寻找一种可实现非接触式血液样品种属差异性状探测的可行光谱方法,采用近红外谱段(4 497.669~7 506.4 cm-1)对犬猫鸡三类常见动物全血样品进行了透射光谱测量。结果发现所测样品均在5 184~5 215 cm-1之间有个明显的吸收峰,在7 000 cm-1附近有个较平缓的吸收峰,且同种动物个体之间的透射光谱分布相似,只在整体透射率上有些差别。采用相关系数比较三类动物全血样品近红外透射光谱的区别,计算得出同种动物不同个体光谱曲线的相关系数均大于0.99,而不同种动物光谱曲线的相关系数在0.509 48~0.916 13之间。其中鸡与猫光谱曲线的相关系数在0.857 23~0.912 44之间;鸡与犬光谱曲线的相关系数在0.509 48~0.664 82之间;猫与犬光谱曲线的相关系数在0.872 75~0.916 13之间。犬猫同属哺乳纲,两者全血的近红外透射光谱相关系数比犬鸡或猫鸡非同纲动物的大,即光谱曲线的相似度更高。研究结果表明近红外透射光谱是一种非接触式动物全血鉴别的可行方法。 相似文献
12.
近红外光谱检测技术已经成功应用于水泥生料成分的快速检测,但我国水泥企业在生产水泥生料时所用原材料品种不一,使用不同的原材料进行生产时对近红外光谱建模带来一定影响.为了研究不同原料生产的水泥生料近红外光谱建模差异,对不同地区水泥生产线所生产的水泥生料进行建模研究.选取两个不同地区水泥生产线的水泥生料样本各95份和82份,... 相似文献
13.
高丹草中粗蛋白质以及碳水化合物的含量丰富,适合青贮处理.优质的高丹草种子是发展畜牧业十分重要的前提,发芽率是检验种子质量最常规的指标之一,播前种子发芽率检测与筛选十分必要.现阶段采用发芽试验法进行种子发芽率的检测,周期长、成本高.基于此,提出利用近红外光谱对高丹草种子进行发芽率的快速、无损检测.选择适量的高丹草种子样品... 相似文献
14.
光谱技术与机器学习算法结合快速识别微塑料, 为微塑料的现场检测提供了极大的技术支持,是一个得到极大关注的新领域。近红外光谱检测技术具有检测速度快、灵敏度高、不损坏样品,且可以在不对样品进行预处理的情况下直接检测等特点,在化学分析、质量检测等领域广泛应用。本文基于近红外光谱检测技术,研究比较了结合Support Vector Machine(SVM)和Extreme Gradient Boosting(XGBoost)两种机器学习分类算法,构建微塑料的高速有效识别分类模型。采用微型近红外光谱仪采集了20种常见的微塑料标准样品的光谱数据,为了防止过拟合,对每种样品多次采样,共收集了1 260个微塑料样本,每个样本包含512个数据点。利用XGBoost算法进行特征重要性排序,共提取了对识别准确率影响较大的65个数据点。分别采用SVM算法和XGBoost算法对数据降维后提取的65个数据点建立微塑料快速识别模型,并运用网格搜索(GridSearchCV)对XGBoost算法影响较大的超参数进行选取,确定n_estimators,learning_rate,min_child_weigh,max_depth,gamma的最佳超参数分别为700,0.07,1,1,0.0。为了提高模型的稳定性,识别速率和泛化能力,对模型采用10折交叉验证和混淆矩阵评估;研究结果表明,XGBoost模型对微塑料的识别准确率为97%,而SVM模型对微塑料的识别准确率为95%;XGBoost模型对微塑料识别的正确率优于SVM模型。综上所述,XGBoost模型微塑料识别整体性能优于SVM模型,为实际微塑料快速识别提供技术支撑。 相似文献
15.
将经验模态分解(EMD)和连续投影算法(SPA)结合用于面粉过氧化苯甲酰(BPO)添加量的近红外光谱检测分析中。在波长898~1 725 nm范围内采集添加了BPO的面粉样本光谱,先通过EMD分解法对其进行噪声预处理,然后利用SPA算法提取光谱特征波长。EMD处理后的光谱建模精度比原始光谱建模精度大大提高,通过SPA算法从512个波长中提取了7个特征波长,基于特征波长建立的模型,与EMD处理后全波长建模结果相比,建模波长个数大幅缩减,但是模型精度与全谱建模相当,结果表明:EMD和SPA结合可有效用于面粉BPO检测的光谱去噪和特征波长提取,该结果为开发便携式面粉BPO检测仪提供了参考和依据。 相似文献
16.
近红外光谱的北方寒地土壤含水率预测模型研究 总被引:1,自引:0,他引:1
我国北方寒地温差大,土壤温差对近红外光谱测量土壤墒情有较大影响。针对这一问题,以北方寒地土壤为研究对象,探究大范围温度胁迫下(-20~40 ℃)土壤的近红外光谱与土壤不同含水率之间的关系预测模型方法。选取黑龙江八一农垦大学农学院试验基地中的黑土,经烘干、过筛等操作处理后配置含水率范围在15%~50%内八种不同湿度的土壤样品,建立北方寒地土壤大范围温度胁迫下土壤的近红外光谱信息与含水率之间的定量预测模型。在全波段光谱数据的基础上,结合五种不同光谱信号预处理方法,采用BP神经网络算法、优化支持向量机算法(SVM)、高斯过程算法(GP)三种智能算法建立北方寒地土壤近红外光谱与含水率的预测模型并验证模型的效果。利用69组数据进行训练建模, BP神经网络相关参数设置为学习速率0.05,最大训练次数设置为5 000,隐层单元数确定为20;SVM采用径向基函数,并利用leave-one-out cross validation确定了最佳惩罚参数为0.87,使模型预测的准确性提高;高斯过程算法内部采用马顿核。模型的定量评估采用决定系数(R2)和均方根误差(RMSE)。结果表明,在建立的全部BP神经网络模型中,效果最佳的为S_G-BP神经网络模型,模型的R2为0.960 9,RMSE为2.379 7;在SVM模型中SNV-SVM模型的效果最好,模型的R2为0.991 1,RMSE为1.081 5;在GP模型中S_G-GP模型的效果最好,模型的R2为0.928,RMSE为3.258 1,综上基于SNV预处理的SVM模型训练效果最优。利用剩余的35组光谱数据作为预测集验证模型性能,经模型对比分析发现基于SVM算法的预测模型效果优于其他两种算法,其中基于S_G的SVM模型效果最优,其预测模型的R2和差RMSE分别为0.992 1和0.736 9。综合建模集与预测集的参数最终确定基于S_G的SVM模型为最佳模型。此模型可以作为大范围温度胁迫条件下(寒地)的土壤含水率有效预测方法,为设计优化适宜寒地便携式近红外土壤含水率快速测量仪提供科学依据。 相似文献
17.
市场上普遍存在“高蛋白”,“高乳脂”等特色牛奶。为了实现对特优优质奶、高蛋白特色奶、高乳脂特色奶和普通奶的无损快速分级,收集了河北省10个牧场不同月份(1月、3月—10月)的5 121份牛奶样本并采集中红外光谱数据,分别测定牛奶中的乳蛋白、乳脂和体细胞数,构建了牛奶品质分级模型。首先,分析牛奶光谱并去除冗余波段,最终选择925~1 597和1 712~3 024 cm-1的敏感波段组合作为全光谱用于建立模型。为了提高模型的性能,采用标准正态变量变换(SNV),多元散射校正(MSC),一阶导数,二阶导数,一阶差分和二阶差分6种算法对光谱进行预处理并建立朴素贝叶斯模型(NB)和随机森林模型(RF),确定二阶差分为最佳预处理方法,其测试集准确率分别为92.11%和96.87%。为了简化模型,利用无信息变量消除法(UVE)、竞争性自适应重加权算法(CARS)与稳定性竞争性自适应重加权采样算法(SCARS)以及UVE-CARS算法和UVE-SCARS算法对二阶差分后的光谱数据提取特征变量。然后,分别基于全光谱和所选特征变量数据,建立NB模型和RF模型。结果表明,SCARS算法为NB模型的最佳特征提取算法,模型的训练集准确率与测试集准确率分别为94.45%,93.94%;UVE-SCARS算法为RF模型的最佳特征提取算法,模型的训练集准确率与测试集准确率分别为99.86%,96.48%。综上,基于傅里叶变换中红外光谱技术建立的二阶差分-UVE-SCARS-RF模型,可以实现特优优质奶、高蛋白特色奶、高乳脂特色奶和普通奶的无损快速分级,通过建立中红外光谱模型,首次将乳蛋白、乳脂含量和体细胞数直接结合进行分级鉴定,这是以往未曾有过的。模型应用方便,只需将获得的牛奶红外光谱数据输入模型即可输出预测类别,在牛奶产业中具有实际应用价值。 相似文献
18.
基于近红外漫反射光谱的香梨类别定性分析 总被引:5,自引:0,他引:5
基于近红外(near infrared, NIR)漫反射光谱分析技术对库尔勒香梨中的脱萼果和宿萼果进行了自动化判别试验研究。用对不同波段范围、不同光谱预处理方法(MSC、SNV、微分光谱)和不同主成分因子数对香梨类别判别结果的影响进行了对比分析,建立了香梨类别的定性判别模型。研究结果表明:用判别分析(discrimant analysis,DA)方法在9 091~4 000 cm-1范围结合原始光谱建立的DA判别模型最优,该方法对校正集正确分类率达100%,预测集正确分类率为95%。 相似文献
19.
为了实现钢结构防火涂料在流通使用领域中不同品牌的现场快速鉴别,提出了一种用近红外光谱技术快速鉴别钢结构防火涂料品牌的方法。运用光栅扫描型近红外光谱仪器,通过近红外漫反射光谱获取不同品牌钢结构防火涂料的光谱曲线,并对光谱数据进行标准正态变量变换(standard normal variate transformation, SNV)、Norris二阶求导等优化处理。利用主成分分析法(principal component analysis, PCA)对钢结构防火涂料品牌进行聚类分析,前五个主成分的累积方差贡献率已达到99.791%,以PC1,PC2和PC3×10的得分值对所有建模样品在三维空间作图,对不同品牌的钢结构防火涂料具有很好的聚类作用。利用5个品牌的各25个样品建立校正模型,用余下5个品牌的各5个样品,共计25个样品进行外部验证,通过未知样品光谱的主成分得分值计算其与校正模型中每个品牌的马氏距离值,实现未知样品的品牌鉴别。建立的定性分析模型对未知样品的外部验证正确率达到100%。说明该分析方法能够快速准确的鉴别钢结构防火涂料品牌,并为市场规范提供技术参考。 相似文献