首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Self-assembled InAs quantum dots (QDs) on In0.52Al0.48As layer lattice matched to (1 0 0) InP substrates have been grown by molecular beam epitaxy (MBE) and evaluated by transmission electron microscopy (TEM) and photoluminescence (PL). TEM observations indicate that defect-free InAs QDs can be grown to obtain emissions over the technologically important 1.3–1.55 μm region. The PL peak positions for the QDs shift to low energy as the InAs coverage increases, corresponding to increase in QD size. The room temperature PL peak at 1.58 μm was observed from defect-free InAs QDs with average dot height of 3.6 nm.  相似文献   

2.
测定GaAs(001)衬底上InAs的生长速率   总被引:1,自引:0,他引:1  
报道了间接测定InAs生长速率的方法.通过设置不同Ga源温度,固定In源温度;和固定Ga源温度,设置不同In源温度,在GaAs(001)衬底上生长GaAs与InGaAs,用RHEED强度振荡测定GaAs与InGaAs的生长速率.验证了InGaAs的生长速率为GaAs的生长速率与InAs的生长速率之和,得到了In源温度在845~880℃时InAs的生长速率曲线.  相似文献   

3.
Solov’ev  V. A.  Chernov  M. Yu.  Komkov  O. S.  Firsov  D. D.  Sitnikova  A. A.  Ivanov  S. V. 《JETP Letters》2019,109(6):377-381
JETP Letters - Metamorphic InAs(Sb)/InGaAs/InAlAs quantum-confined heterostructures with thin (1–5 nm) strongly mismatched GaAs and InAs inserts in a gradient metamorphic InxAl1−xAs...  相似文献   

4.
利用固源分子束外延设备生长出InAs/InAlAs/InP(001)纳米结构材料, 探讨了As压调制的InAlAs超晶格对InAs纳米结构形貌的影响. 结果表明, As压调制的InAlAs超晶格能控制InAs量子线的形成, 导致高密度均匀分布的量子点的生长. 结果有利于进一步理解量子点形貌控制机理. 分析认为, InAs纳米结构的形貌主要由InAlAs层的各向异性应变分布和In吸附原子的各向异性扩散所决定.  相似文献   

5.
Effect of growth pause or ripening time on structural and optical properties of self-assembled InAs/GaAs quantum dot (QD) heterostructures grown by solid state molecular beam epitaxy (MBE ) technique with two different growth rates of InAs (0.032 MLs−1 and 0.197 MLs−1) has been investigated. The QD heterostructures were grown at 520 °C with InAs monolayer coverage of 2.7 ML. The results were explained on the basis of high angle annular dark field scanning transmission electron microscope (HAADF-STEM), scanning electron microscope (SEM) and photoluminescence (PL) measurements. Introduction of growth pause leads the QD system towards a thermodynamic equilibrium state which in turn makes interesting changes on the morphology of the samples. Coagulation of some smaller dots occurs because of ripening to produce evolved QDs and the dot density reduces with growth pause.  相似文献   

6.
We report systematic temperature-dependent measurements of photoluminescence spectra in self-assembled InGaAs/InAs/GaAs quantum dots (QDs). We have studied the rise in temperature of the ground-state homogeneous linewidth.A theoretical model is presented and accounts for the phonon-assisted broadening of this transition in individual QD. We have estimated the homogeneous linewidth of an individual QD from PL spectra of self-organized InAs/GaAs QDs by isolating the PL of each individual QD and fitting the narrow line associated with self-organized QDs through a Lorentzian convoluted by a Gaussian. We have observed a strong exciton–LO–phonon coupling (γLO) which becomes the dominating contribution to the linewidth above the temperature of 45 K. We have also derived the activation energy (ΔE) of the exciton–LO–phonon coupling, zero temperature linewidth (Γ0) and the exciton-LA-phonon coupling parameter (γAc). We report that our values are close to the values found in the literature for single InGaAs QD and InAs QD.  相似文献   

7.
Photoreflectance and photoluminescence studies were performed to characterize InAs ultrathin layer embedded in Si-delta-doped GaAs/AlGaAs high electron mobility transistors. These structures were grown by Molecular Beam Epitaxy on (1 0 0) oriented GaAs substrates with different silicon-delta-doped layer densities. Interband energy transitions in the InAs ultrathin layer quantum well were observed below the GaAs band gap in the photoreflectance spectra, and assigned to electron-heavy-hole (Ee-hh) and electron-light-hole (Ee-lh) fundamental transitions. These transitions were shifted to lower energy with increasing silicon-δ-doping density. This effect is in good agreement with our theoretical results based on a self-consistent solution of the coupled Schrödinger and Poisson equations and was explained by increased escape of photogenerated carriers and enhanced Quantum Confined Stark Effect in the Si-delta-doped InAs/GaAs QW. In the photoreflectance spectra, not only the channel well interband energy transitions were observed, but also features associated with the GaAs and AlGaAs bulk layers located at about 1.427 and 1.8 eV, respectively. By analyzing the Franz-Keldysh Oscillations observed in the spectral characteristics of Si-δ-doped samples, we have determined the internal electric field introduced by ionized Si-δ-doped centers. We have observed an increase in the electric field in the InAs ultrathin layer with increasing silicon content. The results are explained in terms of doping dependent ionized impurities densities and surface charges.  相似文献   

8.
Excess current was obtained in GaAs/InAs quantum dot structures at low temperatures and low current levels. This excess current exhibited instabilities with changing the bias, and over the time. It has been concluded that the excess current is a minority injection current connected with recombination through defects originated from the formation of QDs. The instabilities are connected with unstable occupation of energy levels induced by the above defects, which depend on temperature and on the current level.  相似文献   

9.
InAs/GaAs柱形岛的制备及特性研究   总被引:5,自引:0,他引:5       下载免费PDF全文
利用固源分子束外延(MBE)的方法经SK模式自组装生长由多层InAs/GaAs量子点组成的柱形岛.具体分析了GaAs间隔层厚度,生长停顿时间以及InAs淀积量对发光峰波长的影响.原子力显微镜(AFM)结果显示柱形岛表面的形状和尺寸都比较均匀;室温下不同高度的柱形岛样品的发光波长分别达到1.32和1.4μm,而单层量子点的发光波长仅为1.1μm,充分说明了量子点高度对发光波长的决定性影响,这为调节量子点发光波长提供了一种直观且行之有效的方法. 关键词: 柱形岛 生长停顿 间隔层厚度 PL谱  相似文献   

10.
The effect of temperature on the self-assembled InAs quantum dots (QDs) grown on GaAs substrate under arsenic shutter closed condition has been studied. From atomic force microscopy (AFM), it was found that the size of InAs dots exhibited a transition from single-sized uniformly distributed quantum dot (QD) at a growth temperature of 490°C to two groups of different sizes QDs at 510°C. Since the desorption rate of In atoms from the substrate surface is very high at 510°C, a growth model is proposed that attributes the larger sized QDs to the enhanced capture of desorbed In atoms by a local random protrusion which initiates a regenerative capture and growth process and leads to explosive growth.  相似文献   

11.
The paper presents the photoluminescence (PL) study of InAs quantum dots (QDs) embedded in the asymmetric GaAs/InxGa1?xAs/In0.15Ga0.85As/GaAs quantum wells (QWs) with the different compositions of capping InxGa1?xAs layers. The composition of the buffer In0.15Ga0.85As layer was the same in all studied QD structures, but the In content (parameter x) in the capping InxGa1?xAs layers varied within the range 0.10–0.25. The In concentration (x) increase in the InxGa1?xAs capping layers is accompanied by the variation non-monotonously of InAs QD emission: PL intensity and peak positions. To understand the reasons of PL variation, the PL temperature dependences and X ray diffraction (XRD) have been investigated. It was revealed that the level of elastic deformation (elastic strain) and the Ga/In interdiffusion at the InxGa1?xAs/InAs QD interface are characterized by the non-monotonous dependences versus parameter x. The physical reasons for the non-monotonous variation of the elastic strains and PL parameters in studied QD structures have been discussed.  相似文献   

12.
We have investigated the optical properties of InAs/GaAs self-assembled quantum dots (QDs), grown at 500 °C using a low growth rate (0.014 ML/s), growth interruptions and a two-stage capping process. The samples exhibited large-size dots with densities in the range (3-4.5) × 109 cm−2. Macro-photoluminescence (macro-PL) measurements revealed the presence of five electronic sub-bands in the dots, with the ground state (GS) emission exhibiting a linewidth of ∼70 meV. Because of the dots large size and composition dispersions, associated with the growth method, it was possible to resolve single dots emissions using micro-PL (μ-PL) excitation in the barrier layers of the as-grown samples. The sharp PL lines were detected 60-140 meV above the GS peak energy. High-resolution resonant optical excitation of the dots PL evidenced that these fine lines originate from exciton complexes confined to the GS of individual dots. Non-resonant power dependence μ-PL spectroscopy results further confirmed the occurrence of both single exciton (X) and biexciton (XX) radiative recombinations. Finally, with increasing lattice temperature up to 95 K, PL emissions from most of these nanostructures suffered the usual thermal quenching, with activation energies (Ea) ranging between 12 and 41 meV. The relatively small values of Ea suggest that the growth technique implemented here favors the formation of defects centers in the vicinity of the QDs.  相似文献   

13.
The self-organized, position-controlled and parallel growth of GaAs and InAs nanowhiskers is successfully demonstrated by using a metal–organic chemical vapour deposition method. The growth takes place preferentially along the 111 As direction with the aid of the catalytic effect of Au nanodroplets, and not along 111 Ga or In directions. The diameter and length of the whisker can be controlled artificially down to 10 nm and to over 1 μm, respectively. Doping and composition control of p- or n-type such as GaAs–InAs heterostructure formation are possible along the length direction of the whisker by changing the source gases. In order to control the growth position of the whisker, positioning of a Au nanodroplet is essential and realized by a lithographic method. By choosing the [111]B direction to the substrate surface and normal to the patterned side edges, and by positioning the Au nanodroplet on the side wall, the positioned planar nanowhisker growth and bridging are successfully demonstrated. The growth mechanism of the nanowhiskers is revealed by the scanning and transmission electron microscope observations. Nanometer-size Au-alloy droplets play an important role in the growth of the whiskers. The whisker growth process is governed by the vapor–liquid–solid growth mechanism.  相似文献   

14.
We investigated InAs-Dots-in-a-well structures emitting near 1.3 μm by bright field and Z-contrast mode in a scanning transmission electron microscope. The chemically sensitive Z-contrast mode is found to give direct information on the actual position of the InAs-Dots inside the embedding well, while the bright field mode monitors the strain fields. Comparing a series of structures, we found that the most symmetric design is realized by an nominally asymmetric growth. These symmetric structures exhibit the best performance with respect to photoluminescence spectra and laser threshold current density.  相似文献   

15.
A novel method for positioning of InAs islands on GaAs (1 1 0) by cleaved edge overgrowth is reported. The first growth sample contains strained InxGa1−xAs/GaAs superlattice (SL) of varying indium fraction, which acts as a strain nanopattern for the cleaved-edge overgrowth. Atoms incident on the cleaved edge will preferentially migrate to InGaAs regions where favorable bonding sites are available. By this method InAs island chains with lateral periodicity defined by the thickness of InGaAs and GaAs of SL have been realized by molecular beam epitaxy (MBE). They are observed by means of atomic force microscopy (AFM). The strain nanopattern's effect is studied by the different indium fraction of SL and MBE growth conditions.  相似文献   

16.
The self-assembled growth of InAs/GaAs quantum dots by molecular beam epitaxy is conducted by optimizing several growth parameters, using a one-step interruption method after island formation. The dependence of photoluminescence on areal quantum-dot density is systematically investigated as a function of InAs deposition, growth temperature and arsenic pressure. The results of this investigation along with time-resolved photoluminescence measurements show that the com- bination of a growth temperature of 490℃, with a deposition rate of 0.02 ML/s, under an arsenic pressure of 1×10^-6 Torr (1 Torr = 1.33322×10^2 Pa), provides the best compromise between high density and the photoluminescence of quantum dot structure, with a radiative lifetime of 780 ps. The applicability of this 5-layer quantum dot structure to high-repetition-rate pulsed lasers is demonstrated with the fabrication and characterization of a monolithic InAs/GaAs quantum-dot passively mode-locked laser operating at nearly 1300 nm. Picosecond pulse generation is achieved from a two-section laser, with a 19.7-GHz repetition rate.  相似文献   

17.
Photomodulated reflectance spectroscopy (PR) and X-ray diffraction (XRD) were used for the characterization of highly strained ultrathin InAs quantum wells and modulated InGaAs layers in GaAs grown by metal-organic vapor phase epitaxy (MOVPE). Structures were grown in AIXTRON 200 reactor at 500 °C on (1 0 0) oriented GaAs substrates by sequential growth of InAs and GaAs layers. Various PR spectral features corresponding to optical transitions between ground and excited states in the layers were identified by means of simulation of electronic states in these structures using nextnano3 quantum simulator. Different models of InAs layer growth were used to explain both the XRD and PR data. Results show that the Gaussian distribution of In atoms within few monolayers gives the best fit for our MOVPE grown ultrathin InAs layers.  相似文献   

18.
The photoluminescence spectra of InAs quantum dots (QDs) embedded into four types of InxGa1−xAs/GaAs (x = 0.10, 0.15, 0.20 and 0.25) multi quantum well MBE structures have been investigated at 300 K in dependence on the QD position on the wafer. PL mapping was performed with 325 nm HeCd laser (35 mW) focused down to 200 μm (110 W/cm2) as the excitation source. The structures with x = 0.15 In/Ga composition in the InxGa1−xAs capping layer exhibited the maximum photoluminescence intensity. Strong inhomogeneity of the PL intensity is observed by mapping samples with the In/Ga composition of x ≥ 0.20-0.25. The reduction of the PL intensity is accompanied by a gradual “blue” shift of the luminescence maximum at 300 K as follows from the quantum dot PL mapping. The mechanism of this effect has been analyzed. PL peak shifts versus capping layer composition are discussed as well.  相似文献   

19.
We studied self-assembled InAs/GaAs quantum dots by contrasting photoluminescence and photoreflectance spectra from 10 K to room temperature. The photoluminescence spectral profiles comprise contributions from four equally separated energy levels of InAs quantum dots. The emission profiles involving ground state and excited states have different temperature evolution. Abnormal spectral narrowing occurred above 200 K. In the photoreflectance spectra, major features corresponding to the InAs wetting layer and GaAs layers were observed. Temperature dependences of spectral intensities of these spectral features indicate that they originate from different photon-induced modulation mechanisms. Considering interband transitions of quantum dots were observed in photoluminescence spectra and those of wetting layer were observed in photoreflectance profiles, we propose that quantum dot states of the system are occupied up to the fourth energy level which is below the wetting layer quantum state.  相似文献   

20.
张伟  石震武  霍大云  郭小祥  彭长四 《物理学报》2016,65(11):117801-117801
在InAs/GaAs(001)量子点生长过程中, 当InAs沉积量为0.9 ML时, 利用紫外纳秒脉冲激光辐照浸润层表面, 由于高温下In原子的不稳定性, 激光诱导的原子脱附效应被放大, 样品表面出现了原子层移除和纳米孔. 原子力显微镜测试表明纳米孔呈现以[110]方向为长轴(尺寸: 20-50 nm)、[110]方向为短轴(尺寸: 15-40 nm)的表面椭圆开口形状, 孔的深度为0.5-3 nm. 纳米孔的密度与脉冲激光的能量密度正相关. 脉冲激光的辐照对量子点生长产生了显著的影响: 一方面由于纳米孔的表面自由能低, 沉积的InAs优先迁移到孔内, 纳米孔成为量子点优先成核的位置; 另一方面, 孔外的区域因为In原子的脱附, 量子点的成核被抑制. 由于带有纳米孔的浸润层表面具有类似于传统微纳加工技术制备的图形衬底对量子点选择性生长的功能, 该研究为量子点的可控生长提供了一种新的思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号