共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhifeng Shi Yingjun Wang Chang DuNan Huang Lin WangChengyun Ning 《Applied Surface Science》2011,258(4):1328-1336
Silicon carbon nitride thin films were deposited on Co-Cr alloy under varying deposition conditions such as sputtering power and the partial pressure ratio of N2 to Ar by radio frequency and direct current magnetron sputtering techniques. The chemical bonding configurations, surface topography and hardness were characterized by means of X-ray photoelectron spectroscopy, atomic force microscopy and nano-indentation technique. The sputtering power exhibited important influence on the film composition, chemical bonding configurations and surface topography, the electro-negativity had primary effects on chemical bonding configurations at low sputtering power. A progressive densification of the film microstructure occurring with the carbon fraction was increased. The films prepared by RF magnetron sputtering, the relative content of the Si-N bond in the films increased with the sputtering power increased, and Si-C and Si-Si were easily detachable, and C-O, N-N and N-O on the film volatile by ion bombardment which takes place very frequently during the film formation process. With the increase of sputtering power, the films became smoother and with finer particle growth. The hardness varied between 6 GPa and 11.23 GPa depending on the partial pressure ratio of N2 to Ar. The tribological characterization of Co-Cr alloy with Si-C-N coating sliding against UHMWPE counter-surface in fetal bovine serum, shows that the wear resistance of the Si-C-N coated Co-Cr alloy/UHMWPE sliding pair show much favourable improvement over that of uncoated Co-Cr alloy/UHMWPE sliding pair. This study is important for the development of advanced coatings with tailored mechanical and tribological properties. 相似文献
2.
Shih-Chang LiangDu-Cheng Tsai Zue-Chin ChangHuan-Shin Sung Yi-Chen LinYi-Jung Yeh Min-Jen Deng Fuh-Sheng Shieu 《Applied Surface Science》2011,258(1):399-403
In this study, (TiVCrZrHf)N multi-component coatings with quinary metallic elements were deposited by reactive magnetron sputtering system. The composition, structure, and mechanical properties of the coatings deposited at different N2 flow rates were investigated. The (TiVCrZrHf)N coatings deposited at N2 flow rates of 0, 1, and 2 SCCM showed an amorphous structure, whereas those deposited at N2 flow rates of 4 and 6 SCCM showed a simple face-centered cubic solid solution structure. A saturated nitride coating was obtained for N2 flow of 4 SCCM and higher. By increasing N2 flow to 4 SCCM, the hardness and modulus reached a maximum value of 23.8 ± 0.8 and 267.3 ± 4.0 GPa, respectively. 相似文献
3.
Characterization and properties Ti-Al-Si-N nanocomposite coatings prepared by middle frequency magnetron sputtering 总被引:3,自引:0,他引:3
TiN-containing amorphous Ti-Al-Si-N (nc-TiN/a-Si3N4 or a-AlN) nanocomposite coatings were deposited by using a modified closed field twin unbalanced magnetron sputtering system which is arc assisted and consists of two circles of targets, at a substrate temperature of 300 °C. XRD, XPS and High-resolution TEM experiments showed that the coatings contain TiN nanocrystals embedded in the amorphous Si3N4 or AlN matrix. The coatings exhibit good mechanical properties that are greatly influenced by the Si contents. The hardness of the Ti-Al-Si-N coatings deposited at Si targets currents of 5, 8, 10, and 12 A were 45, 47, 54 and 46 GPa, respectively. The high hardness of the deposited Ti-Al-Si-N coatings may be own to the plastic distortion and dislocation blocking by the nanocrystalline structure. On the other hand, the friction coefficient decreases monotonously with increasing Si contents. This result would be caused by tribo-chemical reactions, which often take place in many ceramics, e.g. Si3N4 reacts with H2O to produce SiO2 or Si(OH)2 tribolay-layer. 相似文献
4.
Yanfeng Wang Li ZhengxianDu Jihong Hua YunfengWang Baoyun 《Applied Surface Science》2011,258(1):456-460
Materials’ surface service property could be enhanced by transition metal nitride hard coatings due to their high hardness, wear and high temperature oxidation resistance, but the higher friction coefficient (0.4-0.9) of which aroused terrible abrasion. In this work, quinternary (Ti,Al,Si,C)N hard coating 3-4 μm was synthesized at 300 °C using plasma enhanced magnetron sputtering system. It was found that the coating's columnar crystals structure was restrained obviously with the increase of C content and a non-columnar crystals growth mode was indicated at the C content of 33.5 at.%. Both the XRD and TEM showed that the (Ti,Al,Si,C)N hard coatings had unique nanocomposite structures composed of nanocrystalline and amorphous nc-(Ti,Al)(C,N)/nc-AlN/a-Si3N4/a-Si/a-C. However, the coatings were still super hard with the highest hardness of 41 GPa in spite of the carbon incorporation. That a-C could facilitate the graphitization process during the friction process which could improve the coating's tribological performance. Therefore, that nanocomposite (Ti,Al,Si,C)N coatings with higher hardness (>36 GPa) and a lower friction coefficient (<0.2) could be synthesized and enhance the tribological performance and surface properties profoundly. 相似文献
5.
用线圈电流控制非平衡磁场,用汤森放电击穿形成深度自触发放电,用磁阱捕获放电形成的二次电子和导致漂移电流,形成了高功率非平衡磁控溅射放电。采用偏压为-100V相对磁控靶放置的圆形平面电极收集饱和离子电流;在距离磁控靶14cm的位置由Langmuir探针测量浮置电位;示波器测量磁控靶的脉冲电压、电流、浮置电位和饱和离子电流信号。装置的放电脉冲功率达到0.9MW,脉冲频率最大值为40Hz左右,空间电荷限制条件是控制电子电流和离子电流的主要机制。 相似文献
6.
X. Wang W. T. Zheng H. W. Tian S. S. Yu W. Xu S. H. Meng X. D. He J. C. Han C. Q. Sun B. K. Tay 《Applied Surface Science》2003,220(1-4):30-39
FeN thin films were deposited on glass substrates by dc magnetron sputtering at different Ar/N2 discharges. The composition, structure and the surface morphology of the films were characterized using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and atomic force microscopy (AFM). Films deposited at different nitrogen pressures exhibited different structures with different nitrogen contents, and the surface roughness depended on the mechanism of the film growth. Saturation magnetization and coercivity of all films were determined using superconducting quantum interference device, which showed that if N2/(Ar+N2) flow ratio was equal to or larger than 30% the nonmagnetic single-phase γ″-FeN appeared. If N2/(Ar+N2) flow ratio was less than 10%, the films consisted of the mixed phases of FeN0.056 and γ′-Fe16N2, whose saturation magnetizations were larger than that of -Fe. If N2/(Ar+N2) flow ratio was 10%, the phases of γ′-Fe4N and -Fe3N appeared, whose saturation magnetizations were lower than that of -Fe. 相似文献
7.
用线圈电流控制非平衡磁场,用汤森放电击穿形成深度自触发放电,用磁阱捕获放电形成的二次电子和导致漂移电流,形成了高功率非平衡磁控溅射放电。采用偏压为-100V相对磁控靶放置的圆形平面电极收集饱和离子电流;在距离磁控靶14cm的位置由Langmuir探针测量浮置电位;示波器测量磁控靶的脉冲电压、电流、浮置电位和饱和离子电流信号。装置的放电脉冲功率达到0.9MW,脉冲频率最大值为40Hz左右,空间电荷限制条件是控制电子电流和离子电流的主要机制。 相似文献
8.
利用朗缪尔探针和快速傅里叶变换研究了非平衡磁控溅射等离子体静电波动的驻波共振频谱特征。频带宽度为0~300kHz,典型放电条件下磁控靶前2cm和10cm两个位置的共振本征频率变化范围分别为10~50kHz和1~10kHz,研究了线圈电流、气压和放电功率等参数对共振本征频率的影响;指出了非平衡磁控溅射中能够导致等离子体静电驻波共振的两种势阱结构,提出驻波共振机制解释特征频率出现的原因,根据声驻波共振机制计算的电子温度数值符合实验的结果。 相似文献
9.
利用朗缪尔探针和快速傅里叶变换研究了非平衡磁控溅射等离子体静电波动的驻波共振频谱特征。频带宽度为0~300kHz,典型放电条件下磁控靶前2cm和10cm两个位置的共振本征频率变化范围分别为10~50kHz和1~10kHz,研究了线圈电流、气压和放电功率等参数对共振本征频率的影响;指出了非平衡磁控溅射中能够导致等离子体静电驻波共振的两种势阱结构,提出驻波共振机制解释特征频率出现的原因,根据声驻波共振机制计算的电子温度数值符合实验的结果。 相似文献
10.
GaN films were deposited on Si (111) substrates by middle-frequency magnetron sputtering. X-ray diffraction revealed preferential GaN (0 0 0 2) orientation normal to the substrate surface for all the films deposited. The diffraction intensity and N contents were found to depend strongly on the total gas pressure. Good quality films were only obtained at pressures in the range of 0.4-1.0 Pa. Little diffraction of GaN (0 0 0 2) could be observed either at total pressures below 0.4 Pa or above 1.0 Pa. The GaN films produced under the optimized conditions have an N:Ga ratio of 1:1 as determined by energy-dispersive X-ray spectroscopy. 相似文献
11.
在非平衡磁控溅射沉积非磁性金属薄膜过程中,离子,原子到达比、沉积速率等参数是影响薄膜结构和性能的重要因素。根据非平衡磁控溅射沉积过程中离子的分布特点,分别考虑离子和中性粒子的传输,导出了对圆形平面靶非平衡磁控溅射沉积薄膜的放电功率、气压和离子束流密度等参数之间的关系,阐明了放电参数对于沉积过程离子束流密度等参数的影响。在Ar放电条件下,测量了系统的伏安特性;采用偏压平面离子收集电极测量了溅射系统轴向离子束流密度随不同的气压、溅射电流和空间位置的变化规律。结果表明模型分析的结论和实验数据的变化趋势相符合。 相似文献
12.
13.
The nanocrystal thin films of zinc oxide doped by Al (ZnO:Al) were deposited by dc reactive magnetron sputtering on the glass substrates, in the pressure range of 33-51 Pa. From the X-ray diffraction patterns, the nanocrystalline structure of ZnO:Al films and the grain size were determined. The optical transmission spectra depend from the sputtering pressure, but their average value was 90% in the range from 33 Pa to 47 Pa. Also, the sputtering pressure changes the optical band gap of ZnO:Al films, which is highest for films deposited at 37 Pa, 40 Pa and 47 Pa. The obtained films at room temperature have a sheet resistance of 190 Ω/cm2 which increases with time, but the films annealed at temperature of 400 °C have constant resistance. The surface morphology of the films was studied by Scanning electron microscopy. XPS spectra showed that the peak of O1s of the as-deposited films is smaller than the peak of the annealed ZnO:Al films. 相似文献
14.
Ti-Si-N nanocomposite coatings were synthesized by using a cathodic arc assisted middle-frequency magnetron sputtering system in an industrial scale. X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscopy were employed to investigate the chemical bonding and microstructure of the coatings. Atomic force microscope and scanning electron microscope were used to characterize the surface and cross-sectional morphologies of the samples. The coating was found to be nc-TiN/a-Si3N4 structure and exhibit a high hardness of 40 GPa when the Si content was 6.3 at.%. 相似文献
15.
采用射频磁控溅射法在蓝宝石衬底上制备了InN薄膜. 研究了N2流量对InN薄膜的晶体结构、表面形貌、光学和电学特性的影响. X射线衍射(XRD)测试结果显示,InN呈六方纤锌矿结构,具有明显(002)择优取向;SEM与AFM图像显示InN薄膜均匀致密,低N2流量下随流量增加,表面逐渐趋于光滑平整,过高的N2流量使薄膜生长方式发生改变;通过检测薄膜吸收特性,利用线性外推法计算禁带宽度为1.81~1.96 eV;电学测试结果表明,制备的薄膜样品均呈现n型导电特性,且迁移率较低,最大为12.2 cm2/v∙s;载流子浓度较高,保持在1021 cm-3数量级;电阻率较小,范围是0.202~0.33 mΩ∙cm. 相似文献
16.
Single-phase CrN and CrAlN coatings were deposited on silicon and mild steel substrates using a reactive DC magnetron sputtering system. The structural characterization of the coatings was done using X-ray diffraction (XRD). The XRD data showed that both the CrN and CrAlN coatings exhibited B1 NaCl structure with a prominent reflection along (2 0 0) plane. The bonding structure of the coatings was characterized by X-ray photoelectron spectroscopy and the surface morphology of the coatings was studied using atomic force microscopy. Subsequently, nanolayered CrN/CrAlN multilayer coatings with a total thickness of approximately 1 μm were deposited on silicon substrates at different modulation wavelengths (Λ). The XRD data showed that all the multilayer coatings were textured along {2 0 0}. The CrN/CrAlN multilayer coatings exhibited a maximum nanoindentation hardness of 3125 kg/mm2 at a modulation wavelength of 72 Å, whereas single layer CrN and CrAlN deposited under similar conditions exhibited hardness values of 2375 and 2800 kg/mm2, respectively. Structural changes as a result of heating of the multilayer coatings in air (400-800 °C) were characterized using XRD and micro-Raman spectroscopy. The XRD data showed that the multilayer coatings were stable up to a temperature of 650 °C and peaks pertaining to Cr2O3 started appearing at 700 °C. These results were confirmed by micro-Raman spectroscopy. Nanoindentation measurements performed on the heat-treated coatings revealed that the multilayer coatings retained hardness as high as 2250 kg/mm2 after annealing up to a temperature of 600 °C. 相似文献
17.
Guojun Zhang Bin Li Bailing Jiang Fuxue Yan Dichun Chen 《Applied Surface Science》2009,255(21):8788-8793
TiN, TiC and Ti(C, N) films have been respectively prepared using closed-field unbalanced magnetron sputtering ion plating technology, with graphite target serving as the C supplier in an Ar-N2 mixture gas. Bonding states and microstructure of the films are characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) in combination with transmission electron microscopy (TEM). The friction coefficients are measured by pin-on-disc test and the wear traces of deposited films are observed by optical microscope. Results show that the TiN film and Ti(C, N) film exhibit dense columnar structure while the TiC film exhibits a mixed microstructure of main nanocrystallite and little amorphous phases. The Ti(C, N) film has the highest microhardness value and the TiC film has the lowest. Because of small amount of pure carbon with sp2 bonds existing in the film, the friction coefficients of Ti(C, N) and TiC multilayer films are lower than that of TiN film. In addition, the multilayer structure of films also contributes visually to decrease of friction coefficients. The TiC film has extremely low friction coefficient while the wear ratio is the highest in all of the films. The results also show that the Ti(C, N) film has excellent anti-abrasion property. 相似文献
18.
用氩气作为放电气体,采用直流磁控溅射法,成功地在不锈钢管道内壁获得了TiZrV薄膜。分别利用能量弥散X射线谱和X射线光电子能谱测量薄膜的成分组成,应用扫描电子显微镜和X射线衍射仪对薄膜进行了测试,并对TiZrV的二次电子产额进行了测量。测试结果表明:TiZrV的成分基本保持在Ti原子分数为30%,Zr原子分数为30%,V原子分数为40%左右,位于“低激活温度区”内;薄膜具有无定形的结构,由微小的纳米晶粒组成;加热激活后TiZrV的二次电子产额有所下降,其峰值由2.03降到1.55,低于不锈钢和无氧铜。 相似文献
19.
《Current Applied Physics》2019,19(12):1318-1324
Molybdenum disulfide (MoS2) is widely used in practice due to its excellent lubricating properties. However, research on the tribological properties of magnetron sputtering for depositing MoS2 films remains limited. Herein, the tribological properties of MoS2 films were investigated in detail through a series of characterization and friction coefficient tests. MoS2 films were deposited onto silicon substrates by magnetron sputtering under different radio-frequency powers (Prf). With increased Prf, the crystallinity of the films gradually increases, whereas the friction coefficient initially decreases and then increases. Prf also affects the chemical composition, surface morphology, and grain size of MoS2 films. At Prf = 300 W, the film surface is dense and smooth, the grain distribution is uniform. Moreover, the films have superior tribological properties and low friction coefficient, which can be attributed to the weak van der Waals force among MoS2 layers and the microscopic morphology of the films. All these results indicate that by reasonably controlling the preparation parameters, MoS2 films with excellent tribological properties can be prepared by magnetron sputtering. 相似文献
20.
Metal films were successfully coated on cenosphere particles using a magnetron sputtering deposition system in which a newly designed sample stage equipped with an ultrasonic vibration generator was used for the tumbling of cenosphere particles. It was found by FE-SEM and AFM results that the films were well compacted and highly uniform in thickness. Due to the difference in sputtering rate, the film thicknesses estimated from FE-SEM characterizations in backscattered mode were <10, 39, 50 and 134 nm for Co, Ni, Cu and Ag films, respectively, under the same sputtering deposition conditions. The RMS values derived from the AFM measurements were 1.94, 4.31, 10.92 and 18.33 nm for Co, Ni, Cu and Ag films, respectively, which can ascribe to the different crystallization behaviors for the four metals. The experiment results indicate that the coating method can be applicable for the fabrication of many other films on cenosphere particles which can be sputter deposited. 相似文献