首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ultrafast luminescence spectroscopy has been undertaken on three iridium cored phosphorescent complexes, with the Ir(ppy)3 molecule being compared with two Ir(ppy)3 cored dendrimers. Energy dissipation by intramolecular vibrational redistribution (IVR) and cooling shows as a luminescence decay because it decreases the admixture of singlet character to the emitting triplet state. A larger amount of vibrational energy dissipates by IVR in dendrimer complexes. We have therefore found a methodology of obtaining unambiguous information on the IVR process and show its potential to study IVR rates as a function of vibrational energy.  相似文献   

2.
3.
Molecular paramagnetism pervades the bioinorganic chemistry of V, Mn, Fe, Co, Ni, Cu, Mo, W, and of a number of non-biological transition elements. To date we can look back at half a century of fruitful EPR studies on metalloproteins, and against this background evaluate the significance of modern EPR spectroscopy from the perspective of a biochemist, making a distinction between conventional continuous wave X-band spectroscopy as a reliable work horse with broad, established applicability even on crude preparations, vs. a diffuse set of "advanced EPR" technologies whose practical application typically calls for narrowly focused research hypotheses and very high quality samples. The type of knowledge on metalloproteins that is readily obtainable with EPR spectroscopy, is explained with illustrative examples, as is the relation between experimental complexity and the spin value of the system.  相似文献   

4.
《Mendeleev Communications》2020,30(6):815-816
  1. Download : Download high-res image (212KB)
  2. Download : Download full-size image
  相似文献   

5.
Dye-tagged metal nanoparticles are of significant interest in SERS-based sensitive detection applications. Coating these particles in glass results in an inert spectral tag that can be used in applications such as flow cytometry with significant multiplexing potential. Maximizing the SERS signal obtainable from these particles requires care in partitioning available nanoparticle surface area (binding sites) between the SERS dyes and the functionalized silanes necessary for anchoring the glass coating. In this article, we use the metal-mediated fluorescence quenching of SERS dyes to measure surface areas occupied by both dyes and silanes and thus examine SERS intensities as a function of both dye and silane loading. Notably, we find that increased surface occupation by silane increases the aggregative power of added dye but that decreasing the silane coverage allows a greater surface concentration of dye. Both effects increase the SERS intensity, but obtaining the optimum SERS intensity will require balancing aggregation against surface dye concentration.  相似文献   

6.
以超支化聚合物囊泡为模板制备了贵金属纳米颗粒表面功能化的杂化囊泡.模板囊泡通过多巴胺修饰的超支化聚醚HSP-DA在水中自组装形成.在碱性条件下,囊泡表面的多巴胺自聚合生成聚多巴胺,实现囊泡的交联.由于聚多巴胺具有强黏附特性,因此可以将HSP-PDA交联囊泡分别与Au纳米溶胶、Ag纳米溶胶直接混合,得到Au纳米颗粒或Ag纳米颗粒功能化的杂化囊泡.分别测定了2种杂化囊泡的拉曼光谱,发现杂化囊泡产生了明显的表面增强的拉曼光谱(SERS)信号,清晰显示了对应于囊泡模板分子的拉曼信号,表明可以通过SERS来原位检测囊泡的组成.Ag纳米颗粒杂化囊泡展示出更高的SERS灵敏度,可进一步作为探针检测水中浓度为10-7mol/L罗丹明6G分子,得到了显著增强的拉曼光谱,证明所制备的Ag纳米颗粒杂化囊泡可用于目标分子的痕量检测.  相似文献   

7.
Recently, we have demonstrated the capacity to separate chiral transition metal (TM) complexes of the type [M(diimine)(3)](n+) using CE buffers containing chiral tartrate salts. In separate work, several chromium(III)-tris-diimine complexes in particular have been shown to bind enantioselectively with calf-thymus (CT) DNA, and a qualitative assessment of the relative strength and enantiospecificity of this interaction is of significant interest in the characterization of these complexes as potential DNA photocleavage agents. Here, we describe two convenient approaches to investigate such binding behavior using chiral CE. For complexes with lower DNA affinities exhibiting primarily surface binding, DNA itself is used as the chiral resolving agent in the electrophoretic buffer. In this approach, resolution of the TM complexes into their Lambda and Delta isomers is achieved with the isomer eluting later exhibiting superior binding affinity toward DNA. For more strongly bound TM complexes containing ligands known to intercalate with DNA, the [Cr(diimine)(3)](3+) complexes are preincubated with oligonucleotide and subsequently enantiomerically resolved in a dibenzoyl-L-tartrate buffer system that facilitates analysis of the unbound TM species only. Differences in isomer binding affinity are distinguished by the relative peak areas of the Lambda- and Delta-isomers, and relative binding strengths of different complexes can be inferred from comparison of the total amount of unbound complex at equivalent DNA/TM ratios.  相似文献   

8.
Kim K  Lee JW  Shin D  Choi JY  Shin KS 《The Analyst》2012,137(8):1930-1936
Organic isocyanide adsorbed on a noble metal nanostructure can be used as a platform for a volatile organic compound (VOC) sensor operating via surface-enhanced Raman scattering (SERS). This is possible since the NC stretching band of organic isocyanides such as 2,6-dimethylphenylisocyanide (2,6-DMPI) is very susceptible to the surface potential of Au onto which 2,6-DMPI is assembled. The surface potential of Au nanoparticles is even subject to change by VOCs, which can be easily monitored by the SERS of 2,6-DMPI. Thereby, under the flow of CCl(4) vapor at a partial pressure of 12.8 kPa, for instance, the NC stretching band is blue-shifted by up to 20 cm(-1) within 30 s, corresponding to a potential change of +0.56 V. Conversely, under the flow of butylamine at 12.8 kPa, the NC stretching band is red-shifted, instead of being blue-shifted, by as much as 12 cm(-1). At lower partial pressures, even a blue- or red-shift of 1 cm(-1) was reproducibly measured at a partial pressure of 125 mPa, corresponding to 6.5 ppm for CCl(4), suggesting that the present detection limit is superior to the results obtained via other techniques, especially those operating based on gold nanoparticles and aggregates.  相似文献   

9.
《中国化学快报》2021,32(8):2369-2379
Living-cell imaging demands high specificity,sensitivity,and minimal background interference to the targets of interest.However,developing a desirable imaging probe that can possess all the above features is still challenging.The bioorthogonal surface-enhanced Raman scattering(SERS) imaging has been recently emerged through utilizing Raman reporters with characteristic peaks in Raman-silent region of cells(1800-2800 cm~(-1)),which opens a revolutionary avenue for living-cell imaging with multiplexing capability.In this review,we focus on the recent advances in the technology development and the biological and biomedical applications of the living-cell bioorthogonal SERS imaging technique.After introduction of fundamental principles for bioorthogonal tag or label,we present applications for visualization of various intracellular components and environment including proteins,nucleic acids,lipids,pH and hypoxia,even for cancer diagnosis in tissue samples.Then,various bioorthogonal SERS imaging-guided thera py strategies have been discussed such as photothera py and surge ry.In conclusion,this strategy has great potential to be a flexible and robust tool for visualization detection and diseases diagnosis.  相似文献   

10.
Although magnesium fulfills several essential biochemical roles, direct studies on this ion are complicated by its unfavorable spectroscopic characteristics. This contribution explores the possibility of monitoring magnesium-nucleic acid binding via a combination of [Co(NH3)6]3+ as surrogate for [Mg(H2O)6]2+, and of high-resolution solid-state 59Co NMR as a spectroscopic probe. Such strategy quenches fast cationic exchanges between bound and free states, while exploiting the superior NMR properties of the 59Co spin. Experiments on relatively small amounts of tRNA can then discern resonances corresponding to different metal binding environments. These characterizations were assisted by studies on model compounds and by multinuclear 31P-59Co recoupling experiments.  相似文献   

11.
Binding interactions of ruthenium(II) photosensitizers with non-ionic surfactants were studied using an emission intensity method. A quantitative model that permits evaluation of binding constants and critical micelle concentrations is given for the binding. Binding constants obtained by the intensity method agree within experimental error with results obtained by an analogous lifetime method. The intensity method uses more readily available instrumentation, is more rapid and lends itself better to weak binding systems than the lifetime method.  相似文献   

12.
The potential of atomic XAFS (AXAFS) to directly probe the catalytic performances of a set of supported metal oxide catalysts has been explored for the first time. For this purpose, a series of 1 wt % supported vanadium oxide catalysts have been prepared differing in their oxidic support material (SiO2, Al2O3, Nb2O5, and ZrO2). Previous characterization results have shown that these catalysts contain the same molecular structure on all supports, i.e., a monomeric VO4 species. It was found that the catalytic activity for the selective oxidation of methanol to formaldehyde and the oxidative dehydrogenation of propane to propene increases in the order SiO2 < Al2O3 < Nb2O5 < ZrO2. The opposite trend was observed for the dehydrogenation of propane to propene in the absence of oxygen. Interestingly, the intensity of the Fourier transform AXAFS peak decreases in the same order. This can be interpreted by an increase in the binding energy of the vanadium valence orbitals when the ionicity of the support (increasing electron charge on the support oxygen atoms) increases. Moreover, detailed EXAFS analysis shows a systematic decrease of the V-Ob(-M(support)) and an increase of a the V-O(H) bond length, when going from SiO2 to ZrO2. This implies a more reactive OH group for ZrO2, in line with the catalytic data. These results show that the electronic structure and consequently the catalytic behavior of the VO4 cluster depend on the ionicity of the support oxide. These results demonstrate that AXAFS spectroscopy can be used to understand and predict the catalytic performances of supported metal oxide catalysts. Furthermore, it enables the user to gather quantitative insight in metal oxide support interactions.  相似文献   

13.
Effects of copper salts containing different anions (SO(4)(2)(-), Cl(-), and NO(3)(-)) on the self-assembly of a designed peptide EAK16(II)GGH with affinity for Cu(2+) have been investigated. The peptide secondary structure, self-assembled nanostructures, and surface activity were observed to depend strongly on the type of anion. Over a salt concentration range from 0.05 to 10.0 mM, SO(4)(2)(-) induced long fiber formation, whereas Cl(-) and NO(3)(-) caused short fiber formation. The fiber length increased with copper sulfate concentration, but the concentration of copper chloride and copper nitrate did not affect the peptide nanostructures significantly. Analysis by Fourier transform infrared spectroscopy (FTIR) revealed that the addition of the copper salts tended to cause the peptide conformation to change from alpha-helix/random coil to beta-sheet, the extent to which depended on the anion type. This evidence of the anion effect was also supported by surface tension measurements using the axisymmetric drop shape analysis-profile (ADSA-P) technique. An explanation for the effect of anions on the peptide self-assembly was proposed. The divalent anion SO(4)(2)(-) might serve as a bridge by electrostatically interacting with two lysine residues from different peptide molecules, promoting beta-sheet formation. The extensive beta-sheet formation may further promote peptide self-assembly into long fibers. On the other hand, monovalent anions Cl(-) and NO(3)(-) may only electrostatically interact with one charged residue of the peptide; hence, a mixed secondary structure of alpha-helix/random coil and beta-sheet was observed. This observation might explain the predominant formation of short fibers in copper chloride and copper nitrate solutions.  相似文献   

14.
The applicability of an etched and silver or gold coated SERS fiber probe in combination with a commercially available laboratory micro-Raman setup or a home built mobile micro-Raman setup to perform on-site field measurements was evaluated and successfully tested on different biological samples. The SERS fiber probe allows one to perform measurements with high spatial resolution. Simultaneously, the laser power used for Raman spectroscopy on biological samples as compared with conventional Raman experiments can be reduced by more than two orders of magnitude. This experimental arrangement was tested to investigate sensitive biological samples like mint plants (Bergamot mint, spear mint) and citrus fruits (kumquat). Furthermore, traces of fungicides on wine leaves were detected by means of such a SERS fiber probe setup.  相似文献   

15.
Journal of Solid State Electrochemistry - Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless...  相似文献   

16.
Graphene/noble metal substrates for surface enhanced RAMAN scattering (SERS) possess synergistically improved performance, due to the strong chemical enhancement mechanism accounted to graphene and the electromagnetic mechanism raised from the metal nanoparticles. However, only the effect of noble metal nanoparticles characteristics on the SERS performance was studied so far. In attempts to bring a light to the effect of quality of graphene, in this work, two different graphene oxides were selected, slightly oxidized GOS (20%) with low aspect ratio (1000) and highly oxidized (50%) GOG with high aspect ratio (14,000). GO and precursors for noble metal nanoparticles (NP) simultaneous were reduced, resulting in rGO decorated with AgNPs and AuNPs. The graphene characteristics affected the size, shape, and packing of nanoparticles. The oxygen functionalities actuated as nucleation sites for AgNPs, thus GOG was decorated with higher number and smaller size AgNPs than GOS. Oppositely, AuNPs preferred bare graphene surface, thus GOS was covered with smaller size, densely packed nanoparticles, resulting in the best SERS performance. Fluorescein in concentration of 10−7 M was detected with enhancement factor of 82 × 104. This work demonstrates that selection of graphene is additional tool toward powerful SERS substrates.  相似文献   

17.

Co–Fe bimetallic nanoparticles-affixed polyvinylidene fluoride-co-hexafluoropropylene (PVdF-HFP) nanofiber membrane is fabricated using the electrospinning and chemical reduction techniques. The semicrystalline polymeric backbone decorated with the highly crystalline Co–Fe bimetallic nanoparticles enunciates the mechanical integrity, while the incessant and swift electron mobility is articulated with the consistent dissemination of bimetallic nanoparticles on the intersected and multi-layered polymeric nanofibers. The diffusion and adsorption of glucose are expedited in the extended cavities and porosities of as-formulated polymeric nanofibers, maximizing the glucose utilization efficacy, while the uniformly implanted Co4+/Fe3+ active centers on PVdF-HFP nanofibers maximize the electrocatalytic activity toward glucose oxidation under alkaline regimes. Thus, the combinative sorts including nanofiber and nanocomposite strategies of PVdF-HFP/Co–Fe membrane assimilate the enzyme-less electrochemical glucose detection concerts of high sensitivity (375.01 μA mM?1 cm?2), low limit of detection (0.65 μm), and wide linear range (0.001 to 8 mM), outfitting the erstwhile enzyme-less glucose detection reports. Additionally, the endowments of high selectivity and real sample glucose-sensing analyses of PVdF-HFP/Co–Fe along with the binder-less and free-standing characteristics construct the state-of-the-art paradigm for the evolution of affordable enzyme-less electrochemical glucose sensors.

  相似文献   

18.
Atomic XAFS is a very attractive technique for probing electronic properties of supported metal nanoclusters. For platinum nanoparticles on different supports, the technique is found to be in good agreement with infrared CO adsorption measurements. The advantages of AXAFS, however, are that no probe molecule is required and that real-time measurements under reaction conditions are possible.  相似文献   

19.
A combined SERS and DFT investigation has been performed for 2-amino,5-nitropyridine (ANP) adsorbed on silver colloidal nanoparticles in order to get a better insight into the adsorption mechanism of ANP on the silver surface. Both B3LYP and B3PW91 functionals were used in the DFT calculations on ANP in the anionic form (ANP) and on different models of ANP/silver surface complexes. A mixed basis set 6-311++G**/LANL2DZ was used in the case of the ANP/Ag+ complexes. From the comparison between the experimental and the computational data, it was evinced that ANP is adsorbed on the silver surface in the anionic form with a quinonoid electronic structure through the nitrogen atom of the imino group.  相似文献   

20.
A silver Compact Disc Recortable (CD-R) based substrate has been proposed as an alternative to silver colloids as active material successfully used in surface-enhanced Raman spectroscopy (SERS). Scanning Electron Microscope (SEM) and Energy-Dispersive X-ray Spectroscopy (EDXS) measurements revealed that silver nanoparticles are present over the entire surface of the uncovered reflective layer of commonly used CD-R. The process of preparation of the CD-R based surface is simple, fast and repeatable. Recorded Raman spectra of 10 µM Rhodamine 6G applied to the substrate corroborate strong enhancement of Raman signal. The maximum value of EF was calculated to be about 5.76 × 106. Raman maps are consistent with SEM micrographs and confirmed the presence of a numerous SERS hot spots occurring on the trucks of CD-R based substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号