共查询到20条相似文献,搜索用时 15 毫秒
1.
针对小型无人机载大视场光学成像观测需求,设计了一款仿生复眼大视场微小型相机.该相机光学系统总焦距为4mm,F数为4,视场角可达106°,在500m的飞行高度分辨率可达0.5m.所设计系统由曲面排布的微透镜阵列、光学像面变换子系统、图像接收和数据采集处理单元三部分组成.仿生复眼中的子透镜采用双胶合透镜组合以减小系统像差,相邻子透镜在满足视场一定重叠率的前提下,可允许相邻多达7个子透镜同时对地面目标进行成像,达到目标定位和测速的目的.仿真结果表明无人机载大视场复眼相机系统在给定的公差范围内像质满足要求,每个通道的光学畸变可控制在1.2%以下. 相似文献
2.
本文通过结构性设计解决了曲面复眼光学系统边缘视场像质难以提高的问题.该光学系统由7个相互独立的子复眼光学系统组成,各子复眼光学系统相互独立,其光线相互交叉.在系统中引入自由曲面透镜,自由曲面透镜相当于棱镜将微透镜阵列光线偏折,使同一子系统的微透镜成像于平的像面上.每个子系统包括一层微透镜阵列,一个自由曲面透镜,一光阑阵列和后续像差校正镜.相比较于传统的复眼系统,该结构对复眼边缘视场的像差校正能力更强,能很大程度地提高边缘视场的像质.该系统的理论视场可达180°,制造精密要求不高且适用性强.本文最后通过光学软件zemax对光学系统进行了模拟验证,证明其可实现性. 相似文献
3.
4.
5.
6.
近年来,内窥镜广泛应用于复杂环境下小尺寸零件缺陷检测,该文设计一种用于航空发动机叶片检测的工业内窥镜光学系统。系统基本结构采用二次成像,物镜采用非对称反远距结构,将大视场光线收束进小口径腔体中,适配镜将物镜所成一次实像放大21倍,后接对角线长42 mm高速相机。系统基于Zemax设计软件进行系统优化、公差分析和像质评价,最终系统具有大视场(120°)、细孔径(3 mm)、耐高温(25℃~180℃)等特点。由于对视场、孔径和适配镜放大率有较高要求,因此合理引入非球面提高系统成像质量,入瞳直径提高至0.5 mm,系统空间截止频率在17 lp·mm-1处,全视场调制传递函数值均大于0.28,最大畸变值小于21.2%。 相似文献
7.
基于大视场人工复眼定位技术 总被引:1,自引:0,他引:1
针对大视场目标探测提出了一种基于人工复眼大视场定位方法.通过分析子眼视场角与总视场角之间的关系,并结合多目视觉定位对子眼排布方式的要求,研究了包含多个子眼的人工复眼结构设计方法.通过分析子眼图像与三维空间映射关系,对二维图像进行裁剪并映射于三维立体空间,实现了二维子眼图像在三维空间的大视场拼接.利用子眼图像坐标、空间三维坐标及系统参数间的关系,建立了空间点多目定位数学模型,并编制目标定位算法.制备了包含19个子眼可实现120°大视场角的样机,通过张正友标定法获得系统参数,并进行目标定位实验.实验结果表明,使用设计的人工复眼大视场成像系统对5.35m处目标进行探测,定位误差为0.19%. 相似文献
8.
针对多维子眼成像通道曲面排布组成的大视场复眼结构,提出了一种切割-旋转-映射的图像处理算法来实现多通道图像的大视场拼接.通过确定复眼结构的排布特征,分析了各成像通道捕获的子眼图像之间的相互关系,去除相邻子眼图像之间的冗余部分,并运用几何光学及成像光学原理,研究了子眼图像与三维映射空间之间的关系,从而实现了二维子眼图像在三维空间的大视场拼接.实验制备了包含37个镜头且视场角可达118°的人工复眼结构,并运用提出的图像处理算法处理制备的复眼结构捕获的子眼图像.结果表明:算法处理图像过程中不损失图像的分辨率,可以有效地实现多通道图像的大视场拼接,且获得的图像可视性强,满足实用化要求,可进一步推进曲面复眼成像系统的应用. 相似文献
9.
10.
昆虫复眼具有小型化、多孔径、大视场、高灵敏度等特点,开展仿生复眼在成像探测技术方面的应用具有重要的意义。介绍了复眼的分类、结构和成像特点,结合当前仿生复眼的研究进展和技术水平,对大视场复眼成像探测系统的结构进行了探索和研究,得到了三种适合用于探测系统的复眼探测结构,对其结构形式进行了介绍,对其优缺点进行了分析,并选取其中一种较好的方案进行了详细设计。所设计的复眼由37个子眼组成,总视场150°。对仿生复眼在光学成像探测方面的应用进行了有益的探索,具有一定的前瞻性和参考价值。 相似文献
11.
12.
设计了一种基于改良曼金反射镜的大相对孔径、大视场的光学成像系统,分析了改良曼金反射镜的像差,提出了改良曼金反射镜的设计方法。系统采用改良曼金反射镜和折反式光学系统结合的形式,相对孔径为1/1.8,视场角为4°×4°,工作波段为450~850 nm,焦距为380 mm,成像探测器像元为2μm×2μm的互补金属氧化物半导体(CMOS)探测器,在250 lp/mm Nyquist频率处的调制传递函数值接近衍射极限且大于0.5。系统次镜采用曼金反射镜和消色差透镜结合的形式,基于系统初始结构初步优化分析所得的球差、正弦差,采用PW法求解出消色差曼金反射镜的光焦度;基于消色差条件和系统剩余色差,求解出消色差曼金反射镜3个表面的光焦度,计算得到了表面的曲率半径。系统的单色像差及色差均较小,成像质量好。 相似文献
13.
针对航空相机复杂的使用环境以及需在高速运动中进行高分辨率成像的特点, 设计了一种大视场航空照相机光学系统。该系统光学结构采用双高斯准对称结构形式,通过双成像模块光学拼接扩大视场角,调整最后一片透镜实现内置调焦,且通过控制地物反射镜的3种工作模式,分别实现航空相机垂直照相、自动调焦及前向像移补偿功能,避免了航拍过程中温度、气压、航高等环境条件变化时引起的图像质量大幅下降,确保整个视场内成像质量不受影响。该光学系统设计实现了全视场无渐晕, 全视场最大畸变<0.5‰,在91 lp/mm处MTF接近衍射极限,物镜在全视场范围内成像质量一致。通过实验室及航拍试验验证,该光学系统具有成像清晰、视场大、可靠性高、体积小、质量轻等优点,满足了航空相机在比较复杂环境下清晰成像的要求。 相似文献
14.
15.
为消除温度变化对共形光学导引头像质的影响,利用光学被动消热差理论对具体设计方法进行实际分析.根据消热差条件选择合理的透镜材料组合,利用衍射元件特殊的光热特性采用折/衍混合结构进行消热差设计.采用椭球形共形整流罩结构减小空气阻力,降低导弹头部气动加热效应,利用三片式反远距结构实现短焦大视场系统设计.该系统工作波段为3~5 μm,系统F/#为2,视场角为±90°;凝视结构的导引头光学系统后工作距达22.8 mm,为制冷型探测器留有足够的空间;冷光阑效率为100%;在-40℃~60℃温度变化范围内,15 lp/mm处全视场MTF值均大于0.4,满足高准确度定位导引头系统对成像质量的要求,保证了系统的轻小型设计. 相似文献
16.
大视场红外导引头光学系统消热差设计 总被引:2,自引:2,他引:2
为消除温度变化对共形光学导引头像质的影响,利用光学被动消热差理论对具体设计方法进行实际分析.根据消热差条件选择合理的透镜材料组合,利用衍射元件特殊的光热特性采用折/衍混合结构进行消热差设计.采用椭球形共形整流罩结构减小空气阻力,降低导弹头部气动加热效应,利用三片式反远距结构实现短焦大视场系统设计.该系统工作波段为3~5 μm,系统F/#为2,视场角为±90°;凝视结构的导引头光学系统后工作距达22.8 mm,为制冷型探测器留有足够的空间;冷光阑效率为100%;在-40℃~60℃温度变化范围内,15 lp/mm处全视场MTF值均大于0.4,满足高准确度定位导引头系统对成像质量的要求,保证了系统的轻小型设计. 相似文献
17.
为了提高紫外探测器系统的信噪比,确保紫外告警相机的低虚警率,分析与研究了大视场紫外光学系统的结构型式,采用反远距、准像方远心光路,实现了大视场光学系统的像差校正,使系统具有优良的成像质量及均匀的像面照度.设计了波段范围为0.254~0.272μm、视场角为110°、相对孔径为1/3的光学系统.系统成像质量良好,畸变小,像面照度均匀.成像质量分析结果表明:全视场最大弥散斑半径小于53.7μm,轴上、轴外视场像面照度均匀性小于15%,0.85视场的相对畸变小于20%,满足紫外告警相机的使用要求. 相似文献
18.
大视场高分辨率显微工业电视镜头设计 总被引:1,自引:0,他引:1
随着CMOS、CCD探测器的广泛应用及其分辨率的不断提高,人们对电视镜头的分辨率提出了更高的要求。将显微工业电视镜头成像原理与传统显微镜进行了比较,并利用光学设计软件ZEMAX进行光学效果的模拟,给出了数值孔径为0.08,光学放大倍数为1,焦距为38mm,视场直径为8mm,全视场角为10°,分辨率为200万像素的光学系统设计结果。所设计的显微工业电视镜头可用于工业生产检测。 相似文献
19.
为了满足大孔径大视场变焦投影镜头的市场需求, 基于Zemax光学软件设计一款连续变焦的投影镜头, 变焦范围为16.27 mm~22.77 mm, 视场角为63.7°~47.8°, F数为1.75~1.95, 配合1.55 cm(0.61英寸)LCOS投影显示芯片使用, 在工作距离2 000 mm处可投射出190.5 cm(75英寸)画面, 光学系统总长小于160 mm, 由10片透镜组成, 其中包括8片玻璃透镜和2片塑料透镜。设计结果表明:镜头在空间极限频率71 lp/mm处, 各个焦段的MTF值均大于0.5, 场曲都在0.1 mm之内, 畸变小于3%, 成像质量良好。最后对光学系统进行了公差分析, 得出一组较宽松的公差。 相似文献
20.
为提高航空侦查识别目标能力以及满足部队全天候作战需要,设计了一种应用于全景航空侦查相机的可见光/红外双视场成像光学系统。可见光光学系统焦距为165 mm/660 mm,相对孔径为1:8.8,视场角为9.1°×6.8°/2.3°×1.7°;红外光学系统焦距为75 mm/300 mm,相对孔径为1:4,视场角为8.3°×6.2°/2.1°×1.6°。采用有限焦距光学系统前面加一个望远系统的方法实现变倍,根据红外器件及可见光器件的像元尺寸计算出红外系统及可见光系统的奈奎斯特频率分别为33 lp/mm和91 lp/mm。在33 lp/mm处,红外光学系统大、小视场的MTF值分别为为0.35和0.37,在91 lp/mm处,可见光光学系统大、小视场MTF值分别为0.41和0.4,成像质量接近衍射极限,表明光学系统成像质量良好,满足实际工程使用要求。 相似文献