首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A multineuron interaction model (RS model) with an energy function given by the product of the squared distances in phase space between the state of the net and the stored patterns is studied in detail within a mean-field approach. Two limits are considered: when the patterns and antipatterns are stored (as in the Hopfield model), PAS case, and when only the patterns are taken into account, OPS case. TheT=0 solutions for the proper memories are exactly obtained for all finite values of, as a consequence of the energy function: whenever one of the overlaps is exactly one the corresponding equations decouple and no configuration average is required. Special interest is focused on the OPS situation, which presents a peculiar phase space topology. On the other hand, the PAS configuration recovers the Hopfield model in the appropriate limit, while keeping associative memory abilities far beyond the critical values of other models when the full Hamiltonian is considered.  相似文献   

3.
4.
We derive a canonical model for gradient frequency neural networks (GFNNs) capable of processing time-varying external stimuli. First, we employ normal form theory to derive a fully expanded model of neural oscillation. Next, we generalize from the single oscillator model to heterogeneous frequency networks with an external input. Finally, we define the GFNN and illustrate nonlinear time-frequency transformation of a time-varying external stimulus. This model facilitates the study of nonlinear time-frequency transformation, a topic of critical importance in auditory signal processing.  相似文献   

5.
Stable irregular dynamics in complex neural networks   总被引:1,自引:0,他引:1  
Irregular dynamics in multidimensional systems is commonly associated with chaos. For infinitely large sparse networks of spiking neurons, mean field theory shows that a balanced state of highly irregular activity arises under various conditions. Here we analytically investigate the microscopic irregular dynamics in finite networks of arbitrary connectivity, keeping track of all individual spike times. For delayed, purely inhibitory interactions we demonstrate that any irregular dynamics that characterizes the balanced state is not chaotic but rather stable and convergent towards periodic orbits. These results highlight that chaotic and stable dynamics may be equally irregular.  相似文献   

6.
We consider the general p-state Potts model on random networks with a given degree distribution (random Bethe lattices). We find the effect of the suppression of a first order phase transition in this model when the degree distribution of the network is fat-tailed, that is, in more precise terms, when the second moment of the distribution diverges. In this situation the transition is continuous and of infinite order, and size effect is anomalously strong. In particular, in the case of p = 1, we arrive at the exact solution, which coincides with the known solution of the percolation problem on these networks.Received: 3 December 2003, Published online: 17 February 2004PACS: 05.10.-a Computational methods in statistical physics and nonlinear dynamics - 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion - 05.50. + q Lattice theory and statistics (Ising, Potts, etc.) - 87.18.Sn Neural networks  相似文献   

7.
The objective of this study is to design a procedure to characterize chaotic dynamical systems, in which they are mapped onto a complex network. The nodes represent the regions of space visited by the system, while the edges represent the transitions between these regions. Parameters developed to quantify the properties of complex networks, including those related to higher order neighbourhoods, are used in the analysis. The methodology is tested on the logistic map, focusing on the onset of chaos and chaotic regimes. The corresponding networks were found to have distinct features that are associated with the particular type of dynamics that generated them.  相似文献   

8.
《Physics letters. A》1988,129(3):157-160
Dynamical properties of a sparsely connected model network composed of N binary decision elements with randomly chosen asymmetrical couplings are studied statistically. In the thermodynamic limit exact results based on the time evolution of the Hamming distance of two different initial states predict the occurrence of two phases upon varying any of the network parameters: a frozen and a chaotic phase. Extensive computer simulations agree well with the results. The model is also shown to share behavioral similarities with the Kauffmann model pointing to the existence of formal relationships.  相似文献   

9.
YI LIANG  XINGYUAN WANG 《Pramana》2013,80(4):593-606
It is proved that the maximum eigenvalue sequence of the principal submatrices of coupling matrix is decreasing. The method of calculating the number of pinning nodes is given based on this theory. The findings reveal the relationship between the decreasing speed of maximum eigenvalue sequence of the principal submatrices for coupling matrix and the synchronizability on complex networks via pinning control. We discuss the synchronizability on some networks, such as scale-free networks and small-world networks. Numerical simulations show that different pinning strategies have different pinning synchronizability on the same complex network, and the consistence between the synchronizability with pinning control and one without pinning control in various complex networks.  相似文献   

10.
We investigate how firing activity of complex neural networks depends on the random long-range connections and coupling strength. Network elements are described by excitable space-clamped FitzHugh-Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength C, there exists a critical fraction of random connections (or randomness) p*, such that if p > p* the firing neurons, which are absent in the nearest-neighbor network, occur. The firing activity becomes more frequent as randomness p is further increased. On the other hand, when the p is smaller, there are no active neurons in network, no matter what the value of C is. For a given larger p, there exist optimal coupling strength levels, where firing activity reaches its maximum. To the best of our knowledge, this is a novel mechanism for the emergence of firing activity in neurons.  相似文献   

11.
李盼池  王海英  戴庆  肖红 《物理学报》2012,61(16):160303-160303
为提高过程神经网络的逼近和泛化能力, 从研究过程神经元信息处理的量子计算实现机理入手, 提出基于量子旋转门及多位受控非门的物理意义构造量子过程神经元的新思想. 将离散化后的过程式输入信息作为受控非门的控制位, 经过量子旋转门作用后控制目标量子位的状态, 以目标量子位处于状态|1>概率幅作为量子过程神经元的输出. 以量子过程神经元为隐层, 普通神经元为输出层, 可构成量子过程神经网络. 基于量子计算机理推导了该模型的学习算法. 将该模型用于太阳黑子数年均值预测, 应用结果表明, 所提方法与普通过程神经网络相比, 预测精度有所提高, 对于复杂预测问题具有一定理论意义和实用价值.  相似文献   

12.
S. Ramji  G. Latha 《Applied Acoustics》2009,70(8):1111-1115
In this work, estimation of ambient noise spectrum influenced by wind speed and wave height carried out for the frequency range of 500 Hz to 5 kHz using Feed forward Neural Network (FNN) is presented. Ocean ambient noise measurements were made in the shallow waters of Bay of Bengal using a portable data acquisition system with a high sensitivity hydrophone at a depth of 5 m from the surface.100 sets of data covering a rage of wind speeds from 2.5 m/s to 8.5 m/s with approximately 15 sets of data falling within 1 m/s over the range of wind speed were used for training the FNN. The parameter wave height which contributes to the noise producing mechanism is also used for training along with wind speed. The results revealed that the proposed method is useful in the estimation and interpolation of underwater noise spectrum level and hence in simulation for the considered frequency range. These were confirmed by calculating the Mean Squared Error (MSE) between the experimental data and the simulation. As the measurements of the underwater ambient noise level are very difficult in remote oceanic regions, where conditions are often inhospitable, these studies seem to be relevant.  相似文献   

13.
Analyzing open-source software systems as complex networks   总被引:1,自引:0,他引:1  
Xiaolong Zheng  Huiqian Li 《Physica A》2008,387(24):6190-6200
Software systems represent one of the most complex man-made artifacts. Understanding the structure of software systems can provide useful insights into software engineering efforts and can potentially help the development of complex system models applicable to other domains. In this paper, we analyze one of the most popular open-source Linux meta packages/distributions called the Gentoo Linux. In our analysis, we model software packages as nodes and dependencies among them as edges. Our empirical results show that the resulting Gentoo network cannot be easily explained by existing complex network models. This in turn motivates our research in developing two new network growth models in which a new node is connected to an old node with the probability that depends not only on the degree but also on the “age” of the old node. Through computational and empirical studies, we demonstrate that our models have better explanatory power than the existing ones. In an effort to further explore the properties of these new models, we also present some related analytical results.  相似文献   

14.
In this paper, we propose a hierarchy of novel decentralized adaptive pinning strategies for controlled synchronization of complex networks. This hierarchy addresses the fundamental need of selecting the sites to pin through a fully decentralized approach based on edge snapping. Specifically, we present three different strategies of increasing complexity which use a combination of network evolution and adaptation of the coupling and control gains. Theoretical results are complemented by extensive numerical investigations of the performance of the proposed strategies on a set of testbed examples.  相似文献   

15.
李靖  孙昊 《物理学报》2021,(6):53-59
高能物理中喷注识别任务是从背景中识别出感兴趣的特定信号,这些信号对于在大型强子对撞机上发现新的粒子,或者新的过程都有着非常重要的意义.量能器中产生的能量沉积可以看做是对喷注的一种拍照,分析这样产生的数据在机器学习领域中属于一个典型的视觉识别任务.基于喷注图片,本文探索了利用卷积神经网络(convolutional neural networks,CNNs)识别量子色动力学背景下的Z玻色子喷注,并与传统的增强决策树(boosted decision trees,BDTs)方法进行了对比.在本文利用的输入前提下,三种相关的性能参数表明,CNN比BDT带来了约1.5倍的效果提升.除此之外,通过最优与最差的喷注图与混淆矩阵,说明了CNN通过训练学习到的内容与整体识别能力.  相似文献   

16.
17.
《Physica A》2005,351(1):133-141
It is shown that the nonlinear dynamics of chaotic time-delay systems can be reconstructed using a new type of neural network with two modules: one for nonfeedback part with input data delayed by the embedding time, and a second one for the feedback part with input data delayed by the feedback time. The method is applied to both simulated and experimental data from an electronic analog circuit of the Mackey–Glass system. Better results are obtained for the modular than for feedforward neural networks for the same number of parameters. It is found that the complexity of the neural network model required to reconstruct nonlinear dynamics does not increase with the delay time. Synchronization between the data and the model with diffusive coupling is also achieved. We have also shown by iterating the model from the present point that the dynamics can be predicted with a forecast horizon larger than the feedback delay time.  相似文献   

18.
韦笃取  张波  丘东元  罗晓曙 《中国物理 B》2010,19(10):100513-100513
Recent experimental evidence suggests that some brain activities can be assigned to small-world networks. In this work, we investigate how the topological probability p and connection strength C affect the activities of discrete neural networks with small-world (SW) connections. Network elements are described by two-dimensional map neurons (2DMNs) with the values of parameters at which no activity occurs. It is found that when the value of p is smaller or larger, there are no active neurons in the network, no matter what the value of connection strength is; for a given appropriate connection strength, there is an intermediate range of topological probability where the activity of 2DMN network is induced and enhanced. On the other hand, for a given intermediate topological probability level, there exists an optimal value of connection strength such that the frequency of activity reaches its maximum. The possible mechanism behind the action of topological probability and connection strength is addressed based on the bifurcation method. Furthermore, the effects of noise and transmission delay on the activity of neural network are also studied.  相似文献   

19.
In this work we propose a computational model to investigate the proliferation of cancerous cell by using complex networks. In our model the network represents the structure of available space in the cancer propagation. The computational scheme considers a cancerous cell randomly included in the complex network. When the system evolves the cells can assume three states: proliferative, non-proliferative, and necrotic. Our results were compared with experimental data obtained from three human lung carcinoma cell lines. The computational simulations show that the cancerous cells have a Gompertzian growth. Also, our model simulates the formation of necrosis, increase of density, and resources diffusion to regions of lower nutrient concentration. We obtain that the cancer growth is very similar in random and small-world networks. On the other hand, the topological structure of the small-world network is more affected. The scale-free network has the largest rates of cancer growth due to hub formation. Finally, our results indicate that for different average degrees the rate of cancer growth is related to the available space in the network.  相似文献   

20.
We study the retrieval properties of the Hopfield model of neural networks when the memorized patterns are statistically correlated in pairs. There is a finite correlationk between the memories of each pair, but memories of different pairs are uncorrelated. The analysis is restricted to the case of an arbitrary but finite number of memories in the thermodynamic limit. We find that there are two retrieval regimes: for 0<T<(1–k) the system recognizes the stored patterns and for (1–k)<T<(1+k) the system is able to recognize pairs, but it is not able to distinguish between its two patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号