首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Femtosecond laser-induced formation of spikes on silicon   总被引:3,自引:0,他引:3  
We find that silicon surfaces develop arrays of sharp conical spikes when irradiated with 500-fs laser pulses in SF6. The height of the spikes decreases with increasing pulse duration or decreasing laser fluence, and scales nonlinearly with the average separation between spikes. The spikes have the same crystallographic orientation as bulk silicon and always point along the incident direction of laser pulses. The base of the spikes has an asymmetric shape and its orientation is determined by the laser polarization. Our data suggest that both laser ablation and laser-induced chemical etching of silicon are involved in the formation of the spikes. Received: 10 September 1999 / Accepted: 7 January 2000 / Published online: 8 March 2000  相似文献   

2.
Interaction of intense ultrashort laser pulses (120 fs at 795 nm) with polymer based composites has been investigated. We have found that carbon filled polymers exhibit different ultrafast ablation behaviour depending on whether the filling material is carbon black or carbon fiber and on the polymer matrix itself. The shape and dimensions of the filling material are responsible for some geometrical bad quality effects in the entrance and inner surfaces of drilled microholes. We give an explanation for these non-quality effects in terms of fundamentals of ultrafast ablation process, specifically threshold laser fluences and material removal paths. Since carbon fiber reinforced polymers seemed particularly concerned, this could prevent the use of ultrafast ablation for microprocessing purposes of some of these materials.  相似文献   

3.
Subwavelength ripples (<λ/4) are obtained by scanning a tightly focused beam (∼1 μm) of femtosecond laser radiation (λ = 800 nm, tp = 100 fs) over the surface of either bulk fused silica and silicon and Er:BaTiO3. The ripple pattern extends coherently over many overlapping laser pulses parallel and perpendicular to the polarisation. Investigated are the dependence of the ripple spacing on the spacing of successive pulses, the direction of polarisation and the material. The evolution of the ripples is investigated by applying pulse bursts with N = 1 to 20 pulses. The conditions under which these phenomena occur are specified, and some possible mechanisms of ripple growth are discussed. Potential applications are presented.  相似文献   

4.
Femtosecond pulsed laser ablation (τ = 120 fs, λ = 800 nm, repetition rate = 1 kHz) of thin diamond-like carbon (DLC) films on silicon was conducted in air using a direct focusing technique for estimating ablation threshold and investigating the influence of ablation parameter on the morphological features of ablated regions. The single-pulse ablation threshold estimated by two different methods were ?th(1) = 2.43 and 2.51 J/cm2. The morphological changes were evaluated by means of scanning electron microscopy. A comparison with picosecond pulsed laser ablation shows lower threshold and reduced collateral thermal damage.  相似文献   

5.
Femtosecond laser micromilling of Si wafers   总被引:1,自引:0,他引:1  
Femtosecond laser micromilling of silicon is investigated using a regeneratively amplified 775 nm Ti:Sapphire laser with a pulse duration of 150 fs operating at 1 kHz repetition rate. The morphological observation and topological analysis of craters fabricated by single-shot laser irradiation indicated that the material removal is thermal in nature and there are two distinct ablation regimes of low fluence and higher fluence with logarithmical relations between the ablation depth and the laser fluence. Crater patterns were categorized into four characteristic groups and their formation mechanisms were investigated. Femtosecond laser micromilling of pockets in silicon was performed. The effect of process parameters such as pulse energy, translation speed, and the number of passes on the material removal rate and the formation of cone-shaped microstructures were investigated. The results indicate that the microstructuring mechanism has a strong dependence on the polarization, the number of passes and laser fluence. The optimal laser fluence range for Si micromilling was found to be 2-8 J/cm2 and the milling efficiency attains its maximum between 10 and 20 J/cm2.  相似文献   

6.
Femtosecond pulsed laser-induced periodic surface structure on GaN/sapphire is reported in this paper. It was found that the period of the laser-induced ripples was much dependent on the incident laser fluence. Through finely adjusting laser fluence and pulse number, uniform ripples could be formed on the sapphire surface. We attributed the formation of such periodic two-dimensional structures to optical interference of the incident laser light with scattered waves from a surface disturbance. Also, it was found that the GaN capping layer played a very important role in forming the periodic structures on the sapphire surface.  相似文献   

7.
Polarization effects in ultrashort-pulse laser drilling   总被引:1,自引:0,他引:1  
A strong influence of the polarization of the laser radiation on the geometry of laser-machined microdrillings has been observed for ultrashort pulses. For drillings with a certain aspect ratio, reflections at the hole walls take place, leading to a non-uniform intensity distribution deep inside the formed hole. Experimental and theoretical results on this subject are discussed. It is shown that a rotation of the polarization during the drilling process (“polarization trepanning”) significantly improves the quality of the produced holes. Received: 21 August 1998 / Accepted: 25 November 1998 / Published online: 17 March 1999  相似文献   

8.
Spectroscopic measurements in the UV/VIS region show reduced transmission through laser-induced backside wet etching (LIBWE) of fused silica. Absorption coefficients of up to 105 cm−1 were calculated from the transmission measurements for a solid surface layer of about 50 nm. The temperatures near the interface caused by laser pulse absorption, which were analytically calculated using a new thermal model considering interface and liquid volume absorption, can reach 104 K at typical laser fluences. The high absorption coefficients and the extreme temperatures give evidence for an ablation-like process that is involved in the LIBWE process causing the etching of the modified near-surface region. The confinement of the ablation/etching process to the modified near-surface material region can account for the low etch rates observed in comparison to front-side ablation.  相似文献   

9.
Periodic microstructures on silicon bulk axe formed by the irradiation of the femtosecond laser with the laser wavelength of 800 nm and the pulse length of 130 fs. We investigate the surface periodic ripple structures produced by femtosecond laser treatment. The effects of feedrate of sample, v, on laser-induced surface topography are studied. We find that the femtosecond laser produce periodic ripples of the sub-micron level on silicon surface. At the same time, we realize the optimal conditions to produce these surface structures. When choosing NA = 0.3, and v = 2000μm/s or 3000μm/s, we find a series of periodic-structure ripples where the spacing is about 120 nm and the width is about 45nm. The experimental results indicate that femtosecond laser treatment can produce line arrays on the sub-micron level, which is a positive factor for fabricating grating and other optical applications in nanoscales.  相似文献   

10.
Laser-induced backside wet etching of fused-silica plates using an aqueous solution of naphthalene-1,3,6-trisulfonic acid trisodium salt (Np(SO3Na)3) is reported. A KrF excimer laser was employed as a light source. The etch rate varied greatly with the concentration of the solution and the laser fluence. For lower concentration solutions, the etch rate increased linearly with laser fluence. For highly concentrated solutions, however, the etch rate increased abruptly at higher fluence. Well-defined line-and-space and grid micropatterns were fabricated using a low etch rate. The etched surface was as flat as the surface of the virgin plates and the etched pattern was free of debris and microcracks. The formation and propagation of shockwaves and bubbles in the solution during the etch process were monitored. High pressure, as well as the high temperature generated by the photothermal process, plays a key role in the etching process. Received: 8 April 2002 / Accepted: 12 April 2002 / Published online: 19 July 2002  相似文献   

11.
The ablation process of thin copper films on fused silica by picosecond laser pulses is investigated. The ablation area is characterized using optical and scanning electron microscopy. The single-shot ablation threshold fluence for 40 ps laser pulses at 1053 nm has been determinated toF thres = 172 mJ/cm2. The ablation rate per pulse is measured as a function of intensity in the range of 5 × 109 to 2 × 1011 W/cm2 and changes from 80 to 250 nm with increasing intensity. The experimental ablation rate per pulse is compared to heat-flow calculations based on the two-temperature model for ultrafast laser heating. Possible applications of picosecond laser radiation for microstructuring of different materials are discussed.  相似文献   

12.
The laser-induced back-side wet etching of fused silica with aqueous solutions of pyranine (8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt) is reported. KrF and XeF excimer lasers were employed as light sources. Well-defined line-and-space and grid micropatterns, free of debris and microcracks, were obtained. Compared with other organic solutions, the aqueous pyranine etching medium etches more slowly but produces a higher quality etched surface. With the KrF laser, the etch rate ranged from 0.02 to 0.12 nm pulse-1, depending on the dye concentration and the fluence of the laser. The etch rate decreased dramatically when the XeF laser was employed, which was partially attributed to the lower absorption efficiency of the aqueous pyranine solution at the XeF laser wavelength. Received: 20 November 2001 / Accepted: 21 November 2001 / Published online: 2 May 2002  相似文献   

13.
Laser polishing of diamond plates   总被引:5,自引:0,他引:5  
Results are reported on laser polishing of 150–400-μm-thick free-standing diamond films with either a copper vapor laser (510 nm wavelength) or an ArF excimer laser (193 nm wavelength). Studies were focused on three particular goals. First, we aimed at a choice of optimum conditions for laser polishing of thick diamond films. It was shown that the laser polishing conditions and the resulting surface roughness were controlled by varying the angle of incidence of a scanning laser beam and by polishing time. Second, the laser ablation technique was applied to remove a defective layer from the “substrate” side of the diamond plates in order to reduce optical losses due to absorption in this layer. Third, the structure of the laser-graphitized diamond surface was studied using UV, visible, and IR optical spectroscopy techniques in the course of the “step-by-step” oxidative removal of the graphitic layer with increasing temperature of the oxidation in ambient air. Once the graphitic layer was removed, the optical transmission in the UV-visible-IR spectral range of the diamond films polished under optimum conditions was measured and compared with the optical transmission of the mechanically polished diamond films. It was shown that the optical quality (in the long-wave infrared region) of the laser-polished diamond plates was sufficient to reach the transmittance value very close to the theoretical limit. Received: 20 October 1998 / Accepted: 8 March 1999 / Published online: 5 May 1999  相似文献   

14.
Optical absorption coefficient spectra of thin silicon films were precisely investigated using a simple reflectance system with total reflectance mirrors placed on the rear side of samples in order to cancel an interference effect in a range between 1.1 eV and 3 eV. The absorption coefficient decreased according to crystallization as the laser energy increased and it got similar to that of single crystalline silicon in the range of 1.7 eV 3 eV. However, the absorption coefficient was higher than 102 cm–1 in the photon energy lower than 1.3 eV. This probably results from band tail states caused by defect states localized at grain boundaries in the crystallized films. 2.5%-phosphorus doped laser crystallized silicon films had a high optical absorption coefficient ( > 104 cm–1) in the low photon energy range (1.1 eV 1.7 eV) caused by free carriers produced from the dopant atoms activated in the silicon films. The experimental results gave the carrier density of 1.3 × 1021 cm3 and the carrier mobility of 20 cm2/Vs.  相似文献   

15.
For precise X-ray diffraction (XRD) measurement giving the three-dimensional structure of proteins, it is important to prepare high-quality single crystals with suitable shape. As a new processing technique to obtain such protein crystals, we employed femtosecond laser-induced cleaving of protein crystal in a growth vessel containing water solution. An intact protein crystal was precisely processed without mechanical contact in its sealed growth vessel by focusing femtosecond laser pulses. We confirmed that three-dimensional processing of the crystal in its supersaturated solution was realized using multiphoton absorption and that the processing was efficiently enhanced by the cleaving behavior attributed to a photomechanical mechanism of the femtosecond laser ablation.  相似文献   

16.
Selective laser patterning of thin films in a multilayered structure is an emerging technology for process development and fabrication of optoelectronics and microelectronics devices. In this work, femtosecond laser patterning of electrochromic Ta0.1W0.9Ox film coated on ITO glass has been studied to understand the selective removal mechanism and to determine the optimal parameters for patterning process. A 775 nm Ti:sapphire laser with a pulse duration of 150 fs operating at 1 kHz was used to irradiate the thin film stacks with variations in process parameters such as laser fluence, feedrate and numerical aperture of objective lens. The surface morphologies of the laser irradiated regions have been examined using a scanning electron microscopy and an optical surface profiler. Morphological analysis indicates that the mechanism responsible for the removal of Ta0.1W0.9Ox thin films from the ITO glass is a combination of blistering and explosive fracture induced by abrupt thermal expansion. Although the pattern quality is divided into partial removal, complete removal, and ITO film damage, the ITO film surface is slightly melted even at the complete removal condition. Optimal process window, which results in complete removal of Ta0.1W0.9Ox thin film without ablation damage in the ITO layer, have been established. From this study, it is found that focusing lens with longer focal length is preferable for damage-free pattern generation and shorter machining time.  相似文献   

17.
Surface morphological evolution of Zr-based metallic glass ablated by femtosecond lasers is investigated in atmosphere condition. Three types of permanent ring structures with micro-level spacing are observed for different laser shots and fluences. In the case of low laser fluences, the generation of annular patterns with nonthermal features is observed on the rippled structure with the subwavelength scale, and the ring spacing shows a decrease tendency from the center to the margin. While in the case of high laser fluences, the concentric rings formation within the laser spot is found to have evident molten traces and display the increasing ring spacing along the radial direction. Moreover, when the laser shots accumulation becomes large, the above two types of ring microstructures begin to develop into the common ablation craters. Analysis and discussion suggests that the stress-induced condensation of ablation vapors and the frozen thermocapillary waves on the molten surfaces should be responsible for the formation of two different types of concentric ring structures, respectively. Eventually, a processing window for each resulting surface microstructure type is obtained experimentally and indicates the possibility to control the morphological transitions among different types.  相似文献   

18.
ZnS thin films were deposited on soda lime glass and aluminum substrates by close-spaced sublimation technique. The change in composition, structural and optical properties of the films was investigated as a function of the substrate temperature. The deposited films were stoichiometric and crystalline in nature having cubic structure oriented only along (1 1 1) plane. The energy band gap of the films deposited at the substrate temperature of 150, 250 and 350 °C was 3.52, 3.58 and 3.63 eV respectively. These films were then bombarded with 2-10 keV energy pulsed Ar+ beam and their electron yield was determined from impinging ion and emitted electron currents. The electron yield of ZnS films was much high as compared to the metals. The electron yield of ZnS films increased with energy of the incident ion and got saturated at about 8 keV. The most important result of this study was that the electron yield of ZnS films having same composition was different. Monte Carlo simulations performed to interpret these experimental findings showed that the dissimilar electron yields of ZnS films is due to the combined effect of energy band gap, surface barrier potential and density of the films.  相似文献   

19.
This paper reports tribological properties of diamond-like carbon (DLC) films nanostructured by femtosecond (fs) laser ablation. The nanostructure was formed in an area of more than 15 mm × 15 mm on the DLC surface, using a precise target-scan system developed for the fs-laser processing. The frictional properties of the DLC film are greatly improved by coating a MoS2 layer on the nanostructured surface, while the friction coefficient can be increased by surface texturing of the nanostructured zone in a net-like patterning. The results demonstrate that the tribological properties of a DLC surface can be controlled using fs-laser-induced nanostructuring.  相似文献   

20.
We use surface-femtosecond laser mass spectrometry to study the fragments/products formed when trinitrotoluene (TNT) is subjected to femtosecond laser pulse irradiation and to study the conditions under which TNT is removed from a solid surface. In surface-femtosecond laser mass spectrometry a compound is deposited on a solid substrate and is desorbed into vacuum by femtosecond irradiation forming a plume of ionized and neutral species. The positive or negative ions are then accelerated by an electric potential and allowed to drift in the field-free region of a time-of-flight mass spectrometer. The mass-to-charge ratio of each ion is obtained using the value of the accelerating field and the ion flight time. In this paper we report femtosecond laser mass spectra for the positive ions formed by desorbing TNT with 130 fs pulses centered at 800 nm for fluences ranging from 7 to 1.4 × 105 J/m2. The conditions under which TNT removal and ionization occur are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号