首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The development of production methods for carbonitridic hard coatings needs information on depth distributions of the layer components as well as on stoichiometries and binding states of the layer constituents. Si-C-N samples were produced by implanting 13C- and 15N-ions into c-Si <111>, and the implanted layers were investigated by means of NRA depth profiling. Afterwards several samples were characterized by surface analytical techniques, and XPS- and AES depth profiles were measured for typical samples. The measurements confirm the NRA depth profiles and stoichiometries. Furthermore, in all depth ranges C 1s- and N 1s binding energies are observed which are consistent with those of carbonitrides.  相似文献   

3.
Changes in morphology and local chemical composition due to various methods of modification of surfaces of Cu-Zr, Cu-Hf, and Cu-Ti amorphous alloys (caused by aging in air/dry corrosion or hydrogen charging) were investigated. These modification/activation procedures transform the original amorphous ribbons of low surface area into efficient and stable catalysts, due to the segregation of a distinct amount of Cu and the development of a large specific surface area of Cu on a ZrO x or HfO x support. It was found that aging in air resulted in the formation of a bilayer of rough copper (containing small Cu particles indispensable for catalysis) on top of a rather smooth oxide underlayer (ZrO x, HfO x ). Careful examination of the cross sections of the modified Cu-based ribbons revealed that, even after prolonged aging in air, only the first few microns of the surface layer was modified. Cu-Ti alloy was stable in air and did not undergo the expected modification. Hydrogenation followed by air exposure resulted in a disintegration of the ribbons into small pieces. Each piece was covered with many small Cu clusters 0.1-0.5 microm in diameter formed on an oxide underlayer. High-energy resolution Auger spectroscopy allowed identification of the underlayers (ZrO2, HfO2, or TiO x ), identification of small Cu clusters, determination of the degree of surface oxidation of them, and mapping of the surface to identify the Cu-covered and "naked" heavy metal.  相似文献   

4.
This article reports the microstructural characteristics of various petroleum and pitch based nuclear graphites (IG-110, NBG-18, and PCEA) that are of interest to the next generation nuclear plant program. Bright-field transmission electron microscopy imaging was used to identify and understand the different features constituting the microstructure of nuclear graphite such as the filler particles, microcracks, binder phase, rosette-shaped quinoline insoluble (QI) particles, chaotic structures, and turbostratic graphite phase. The dimensions of microcracks were found to vary from a few nanometers to tens of microns. Furthermore, the microcracks were found to be filled with amorphous carbon of unknown origin. The pitch coke based graphite (NBG-18) was found to contain higher concentration of binder phase constituting QI particles as well as chaotic structures. The turbostratic graphite, present in all of the grades, was identified through their elliptical diffraction patterns. The difference in the microstructure has been analyzed in view of their processing conditions.  相似文献   

5.
Heterogeneous catalysis is one of the oldest nanosciences. Although model catalysts can be designed, synthesized, and, to a certain degree, characterized, industrial heterogeneous catalysts are often chemically and physically complex systems that have been developed through many years of catalytic art, technology, and science. The preparation of commercial catalysts is generally not well controlled and is often based on accumulated experiences. Catalyst characterization is thus critical to developing new catalysts with better activity, selectivity, and/or stability. Advanced electron microscopy, among many characterization techniques, can provide useful information for the fundamental understanding of heterogeneous catalysis and for guiding the development of industrial catalysts. In this article, we discuss the recent developments in applying advanced electron microscopy techniques to characterizing model and industrial heterogeneous catalysts. The importance of understanding the catalyst nanostructure and the challenges and opportunities of advanced electron microscopy in developing nanostructured catalysts are also discussed.  相似文献   

6.
We employ Raman spectroscopy to characterize several microstructural aspects of a family of ethylene-propylene copolymers (EPC). Focus is made on the simultaneous analysis of crystallinity and chemical composition. A curve fitting procedure is used to isolate Raman bands ascribed to polypropylene chains in the crystal lattice from contributions of the amorphous phase. Crystal contents of EPC calculated on this basis are in the range 10–34 wt%, in good agreement with independent wide angle x-ray diffraction and differential scanning calorimetry measurements. Besides, Raman spectroscopy captures in some of the samples a mixed crystalline structure with both, polyethylene and polypropylene crystals, indicating a distinctive molecular architecture. The chemical composition of EPC is obtained from Raman spectra in the melt state to decouple peaks characteristics of the crystal lattice from fundamental vibrational modes of the polymer chain. EPC present ethylene contents in the range 5–26 mol%, in good agreement with parallel results from 13C nuclear magnetic resonance analysis. Remarkably, a rather complete characterization of EPC can be achieved on the base of a single experimental technique.  相似文献   

7.
We have studied the nano- and microparticles formed by complexation of PDAC [poly(diallyldimethyl-ammoniumchloride)] and SDS (sodium dodecyl sulfate). The complexation phenomenon was characterized by light scattering and zeta-potential measurements. The nature of the complexes was revealed by direct-imaging cryogenic temperature transmission electron microscopy (cryo-TEM), showing nanometric details of the complexes formed around the point of neutralization. The images also reveal how those aggregates are solubilized by excess surfactant, first into faceted particles with threadlike micelles attached to their surfaces, prior to complete solubilization, then into lacelike aggregates, and finally into spheroidal micelles. The nanostructure of the complexes strongly suggests they are made of a hexagonal liquid crystalline phase. This was further supported by small-angle X-ray scattering (SAXS).  相似文献   

8.
9.
10.
Porous perovskite-type complex oxides LaCoO3 and La0·95Sr0·05Ni0·05Co0·95O3 were produced by combustion method. The properties of these porous materials such as crystal structures, particle sizes, surface patterns, pore size, surface area and pore volume were characterized by X-ray diffraction( XRD), scanning electron microscopy(SEM) and BET measurements. The results indicated that all porous materials are of the perovskite-type complex oxides. Doping Sr2+ ions on site A and doping Ni2+ ions on site B entered the crystal lattices of LaCoO3 in the place of La3+ and Co3+, respectively, and the maximum peak of XRD patterns of doping sample was weaken and broaden. Morphological microscopy demonstrated agglomerates involved mostly thin smooth flakes and layers perforated by a large number of pores and its lamella decreased with the introduction of Sr2+ and Ni2+. Hysteresis loop in the N2 adsorption-desorption isotherm of samples indicated its porous structures and the doping effect on its pore size, surface area and pore volume were improved. The porous catalysts have been tested for methane catalytic combustion and the results showed that these catalysts possessed high catalytic activity.  相似文献   

11.
Zotov  R. A.  Molchanov  V. V.  Goidin  V. V.  Moroz  E. M.  Volodin  A. M. 《Kinetics and Catalysis》2010,51(1):139-142
The formation of individual and modified high-purity aluminum oxides (γ-Al2O3) prepared from aluminum alcoholates was studied. In the study of the hydrolysis of aluminum alcoholates and modified (Zr, Ti, and Si) aluminum alcoholates, it was found that an increase in the chain length of the alkoxy group and an increase in the aging temperature or aging time in mother liquor resulted in a decrease in the concentration of an amorphous phase, an increase in the concentration of a pseudoboehmite phase, and an improvement in its crystal structure. Hydrolysis in alkaline (a 0.5 wt % solution of ammonia) or neutral solutions made it possible to obtain samples with an almost 100% pseudoboehmite content. At the same time, the samples prepared by hydrolysis in an acidic solution (a 0.1 M solution of HCl) contained a considerable amount of an amorphous phase. It was found that the specific rate of dehydration of n-butanol on the modified aluminum oxide samples linearly decreased with the concentration of donor sites and linearly increased with the concentration of acceptor sites, whose concentration was measured using the spin probe method.  相似文献   

12.
Vanadium oxide catalysts of the monolayer type have been prepared by means of chemisorption of vanadate(V)-anions from aqueous solutions and by chemisorption of gaseous V2O3(OH)4. Using Al2O3, Cr2O3, TiO2, CeO2 and ZrO2, catalysts with an approximately complete monomolecular layer of vanadium(V) oxide on the carrier oxides can be prepared, if temperature is not too high. Divalent metal oxides like CdO and ZnO may already form threedimensional surface vanadates at moderate temperature. The thermal stability of a monolayer catalyst is related to the parameter z/a, i. e. the ratio of the carrier cation charge to the sum of ionic radii of carrier cation and oxide anion. Thus, monolayer catalysts will be thermally stable only under the condition that z/a is not too high (aggregated catalyst) nor too small (ternary compound formation).  相似文献   

13.
Nanoscale resolution electron microscopy analysis combined with ion beam assisted techniques are presented here, to give answers to full characterization of morphology, growth mode, phase formation, and compositional distribution in nanocomposite TiAlSiN coatings deposited under different energetic conditions. Samples were prepared by magnetron sputtering, and the effects of substrate temperature and bias were investigated. The nanocomposite microstructure was demonstrated by the formation of a face-centered cubic (Ti,Al)N phase, obtained by substitution of Al in the cubic titanium nitride (c-TiN) phase, and an amorphous matrix at the column boundary regions mainly composed of Si, N (and O for the samples with higher oxygen contents). Oxygen impurities, predicted as the principal responsible for the degradation of properties, were identified, particularly in nonbiased samples and confirmed to occupy preferentially nitrogen positions at the column boundaries, being mainly associated to silicon forming oxynitride phases. It has been found that the columnar growth mode is not the most adequate to improve mechanical properties. Only the combination of moderate bias and additional substrate heating was able to reduce the oxygen content and eliminate the columnar microstructure leading to the nanocomposite structure with higher hardness (>30 GPa).  相似文献   

14.
Paliadium sols containing largely uniform, nanosize metallic, particles stabilized by poly(N-vinyl-2-pyrrolidone) were found to be active microheterogeneous catalysts for hydrogenation of water soluble olefinic substrates as well as of unsaturated lipid dispersions. The same metallic particles were supported on the surface of crosslinked insoluble poly(N-vinyl-2-pyrrolidone) and served as easily removable macroheterogeneous hydrogenation catalysts.  相似文献   

15.
Surface characterization of silica-supported cobalt oxide catalysts   总被引:1,自引:0,他引:1  
Silica supported cobalt oxides were prepared by the impregnation method, using an aqueous solution of cobalt nitrate hexahydrate (Co(NO3)· 6H2O), then calcined at different temperatures (510, 620 and 870 K). Characterization of the samples was carried out by X-ray diffraction, N2-adsorption at −196°C, UV–Vis diffuse reflectance spectroscopy and KBr-IR spectroscopy of the calcination products. The surface acidity was studied by IR spectroscopy of adsorbed pyridine at different temperatures (300, 370, 470 and 570 K). Results indicated that Co3O4 is the stable phase on silica, however, dispersion of minor amount of cobalt oxide could not be ruled out. Results also indicated that the crystallinity of the formed Co3O4 increased by increasing the loading level and/or the calcination temperature. Furthermore, the surface area of the support was decreased by increasing the loading level and the calcination temperatures. It has been also found that the surface of the supported catalysts exposed strong different Lewis acid sites.  相似文献   

16.
0.8% Pt on KL zeolite was prepared by reduction with H2 and NaBH4. Transmission electron microscopy and X-ray diffraction were used for characterization of morphology of the metal particles; acidity of the zeolite framework was measured with IR spectra of adsorbed pyridine. Reduction by NaBHP4 produced rather large, needle-like Pt crystallites on the outer surface of zeolite grains which contained very little acidity. Subsequent hydrogen treatment brought about their severe sintering; at the same time, small crystallites appeared. A bimodal distribution was seen when the catalyst was reduced with hydrogen; this sample exhibited appreciable acidity. X-ray diffraction data showed the presence of Pt particles above noise level in the case of borohydride-reduced catalyst only, in agreement with EM data.  相似文献   

17.
单原子催化剂(SACs)是指金属以单原子形式均匀分散在载体上形成的具有优异催化性能的催化剂.与传统载体型催化剂相比,SACs具有活性高、选择性好及贵金属利用率高等优点,在氧化反应、加氢反应、水煤气变换、光催化制氢以及电化学催化等领域都具有广泛应用,是目前催化领域的研究热点之一.常见的SACs制备方法有共沉淀法、浸渍法、置换反应法、原子层沉积法以及反奥斯瓦尔德熟化法等.实验及理论研究表明,单原子催化剂高的活性和选择性可归因于活性金属原子和载体之间的相互作用及由此引起的电子结构改变.载体是影响单原子催化剂性能的重要因素之一.目前常用的SACs载体有金属氧化物、二维材料和金属纳米团簇等,本文着重综述了这三种负载型SACs的制备、表征、催化性能及催化机理,并概述了SACs未来可能的发展方向和应用.研究表明,共沉淀法、湿浸渍法和反奥斯瓦尔德熟化法等方法可用来制备氧化物负载的SACs.高角环形暗场像-扫描透射电子显微镜(HAADF-STEM)表明金属是以单原子形式均匀分散在载体上,近边X射线吸收精细结构(XANES)结果表明金属原子与载体之间存在着强相互作用.实验和理论研究均表明该类催化剂在CO氧化反应、水煤气转化及乙炔加氢生成乙烯等反应中具有高的催化活性和稳定性.采用化学气相沉积法和原子层沉积法等方法可以将金属原子稳定地负载在具有缺陷活性位点的石墨烯、MXene及六方氮化硼等二维材料上并相应制备出SACs.X射线吸收精细结构谱(EXAFS)和XANES分析表明样品中金属以单原子形式存在,而且金属原子与载体之间也存在着强相互作用,理论计算表明金属原子与二维载体之间的电荷转移是SACs活性高的主要原因.置换反应法和连续还原法是制备溶胶型SACs的有效方法,其中置换反应法可将活性金属原子原位组装在金属模板团簇的顶点位置,连续还原法可将活性原子负载于金属模板团簇的表面.DFT计算表明活性原子和金属模板团簇之间存在电荷转移效应,这是溶胶型SACs具有非常高的催化活性的主要原因.SACs下一步的研究方向可能是:(1)研究开发新型SACs,尽可能提高催化剂中活性金属原子的含量;(2)深入研究SACs的结构、活性以及催化机理之间的关系;(3)尝试将SACs大规模应用于工业催化.  相似文献   

18.
19.
Preparation and characterization of silica supported Au-Pd model catalysts   总被引:1,自引:0,他引:1  
Au-Pd bimetallic model catalysts were synthesized as alloy clusters on SiO2 ultrathin films under ultrahigh vacuum (UHV) conditions. The surface composition and morphology were characterized with low energy ion scattering spectroscopy (LEIS), infrared reflection absorption spectroscopy (IRAS), and temperature programmed desorption (TPD). Relative to the bulk, the surface of the clusters is enriched in Au. With CO as a probe, IRAS and TPD were used to identify isolated Pd sites at the surface of the supported Au-Pd clusters. Ethylene adsorption and dehydrogenation show a clear structure-reactivity correlation with respect to the structure/composition of these Au-Pd model catalysts.  相似文献   

20.
Two Pd-Dy/-Al2O3 catalysts, with 1 wt.% Dy and various Pd loadings (0.1 and 0.5 wt.%) have been investigated by EXAFS at the Dy LIII-edge, and compared with 1 % Dy/-Al2O3. The Dy-carrier interaction was found to change with the Pd dispersity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号