首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
车振  张军  余新宇  陈哲 《应用光学》2015,36(4):606-611
为了提高GaN基LED芯片的光提取效率,以GaN基LED芯片为研究对象,建立了在蓝宝石衬底出光面和外延生长面上具有半球型图形的LED倒装芯片模型,并利用光学仿真软件对图形参数进行优化设计。实验结果表明:在蓝宝石衬底的出光面和外延生长面双面都制作凹半球型图形对芯片光提取效率的提高效果最好,并且当半球的半径为3 m,周期间距为7 m时,GaN基LED倒装芯片的最大光提取效率为50.8%,比无图形化倒装芯片的光提取效率提高了115.3%。  相似文献   

2.
Kim H  Choi KK  Kim KK  Cho J  Lee SN  Park Y  Kwak JS  Seong TY 《Optics letters》2008,33(11):1273-1275
We report on the fabrication of high-efficiency vertical-injection GaN-based light-emitting diodes (LEDs) fabricated with integrated surface textures. An optical ray-tracing simulation shows that the high integration of surface textures can effectively enhance the light-extraction efficiency. The integrated surface textures are fabricated on the top surface of LEDs by generating hexagonal cones on the periodically corrugated surfaces of n-GaN. Compared to reference LEDs without textures, LEDs fabricated with integrated surface textures show an enhancement of the output power by a factor of 2.59, which is in agreement with the calculated results.  相似文献   

3.
Blue InGaN/GaN multiple quantum well (MQW) light-emitting diodes (LEDs) with patterned sapphire substrate (PSS) are simulated by the APSYS software. Approach of combining finite-difference time-domain (FDTD) method and raytracing technique is applied to perform light extraction. The simulation results show that PSS dramatically increases extraction efficiency of light power, in agreement with experiment. It is found that extraction efficiency can be maximized by changing the shape of PSS. This work presents a new approach to combine electrical simulation with FDTD and raytracing in 3D TCAD simulation of GaN-LED.  相似文献   

4.
王靖  吴立军 《光子学报》2014,39(8):1500-1504
运用三维时域有限差分法,研究了完美/缺陷光子晶体特定参量的改变对发光二极管光抽取效率影响,得出优化参量.基于近场远场转换,进一步分析了两种不同类型的缺陷引入及其周边空气孔半径的改变对光子晶体发光二极管远场辐射特性的影响.数值研究的结果表明,通过引入缺陷以及减小缺陷周围空气孔半径能够同时提高光子晶体发光二极管的光抽取效率和远场辐射方向性.  相似文献   

5.
Surface patterning of p-GaN to improve the light extraction efficiency of GaN-based blue light-emitting diodes(LEDs) has been investigated. Periodic nanopillar arrays on p-GaN have been fabricated by polystyrene(PS) nanosphere lithography; the diameter of the nanopillars can be tuned to optimize the electrical and optical properties of the LEDs. The electroluminescence intensity of the nanopillar-patterned LEDs is better than that of conventional LEDs; the greatest enhancement increased the intensity by a factor of 1.41 at a 20 mA injection current. The enhancements can be explained by a model of bilayer film on a GaN substrate. This method may serve as a practical approach to improve the efficiency of light extraction from LEDs.  相似文献   

6.
为了提高GaN基发光二极管(LED)的外量子效率,在蓝宝石衬底制作了二维光子晶体.衬底上的二维光子晶体结构采用激光全息技术和感应耦合等离子体(ICP)干法刻蚀技术制作,然后采用金属氧化物化学气相沉积(MOCVD)技术在图形蓝宝石衬底(PSS)上生长2μm厚的n型GaN层,4层量子阱和200nm厚的p型GaN层,形成LED结构.衬底上制作的二维光子晶体为六角晶格结构,晶格常数为3.8μm,刻蚀深度为800nm.LED器件光强输出测试结果显示,在PSS上制作的LED(PSS-LED)的发光强度普遍高于蓝宝石平 关键词: 全息 发光二极管 图形蓝宝石衬底 外量子效率  相似文献   

7.
基于不同衬底材料高出光效率LED芯片研究进展   总被引:1,自引:1,他引:0  
提高LED芯片的出光效率是解决LED光源大功率化和可靠性的根本。根据LED芯片所用衬底材料的不同,总结了近年来提高GaN基LED出光效率的研究进展,介绍了新的设计思路、工艺结构与制备方法。并从材料结构和衬底选取方面,对LED芯片未来的发展趋势进行了展望。  相似文献   

8.
This letter presents a holographic photonic crystal (H-PhC) Al-doped ZnO (AZO) transparent Ohmic contact layer on p-GaN to increase the light output of GaN-based LEDs without destroying the p-GaN. The operating voltage of the PhC LEDs at 20 mA was almost the same as that of the typical planar AZO LEDs. While the resultant PhC LED devices exhibited significant improvements in light extraction, up to 1.22 times that of planar AZO LEDs without PhC integration. Temperature dependence of the integrated photoluminescence intensity indicates that this improvement can be attributed to the increased extraction efficiency due to the surface modification. These results demonstrate that the surface-treated AZO layer by H-PhCs is suitable for fabricating high-brightness GaN-based LEDs.  相似文献   

9.
Enhancement of light extraction in a GaInN light-emitting diode(LED)employing an omni-directional reflector(ODR)consisting of GaN,SnO2 nanorod and an Ag layer was presented.The ODR comprises a transparent,quaxterwave layer of SnO2 nanorod claded by silver and serves as an ohmic contact to p-type were prepared by dip-coating technique.The average size of the spherical SnO2 particles obtained is 200 nm.The refractive index of the nanorod SnO2 film layer is 2.01.The GaInN LEDs with GaN/SnO2/Ag ODR show a lower forward voltage.This was attributed to the enhanced reflectivity of the ODR that employs the nanorod SnO2 film layer.Experimental results show that ODR-LEDs have lower optical losses and higher extraction efficiency as compared to conventional LEDs with Ni/Au contacts and conventional LEDs employing a distributed Bragg reflector(DBR).  相似文献   

10.
We present the fabrication details and performance characteristics of InGaN light-emitting diodes (LEDs) consisting of arrays of interconnected micro-pixels where each micro-pixel is nano-textured via nano-imprinting. We have taken the further step of embodying the pixels in a rhomboidal geometry. It is found that the power output of these nano-textured micro-LEDs with rhomboidal geometries is 57% higher than that of conventional square-shaped broad-area reference LEDs. The series resistance of the textured LEDs is reduced, owing to the multi-finger electrodes introduced. Furthermore, these LEDs can sustain higher operation current of up to 500 mA without encapsulation, suggesting improved thermal dissipation capability. Finally, the combined effects of surface texturing, micro-LED configuration, and geometric shaping on the light extraction are analyzed. It is found that the power enhancement by surface texturing, micro-pixellating and the rhomboidal geometry are 32%, 16%, and 9%, respectively, implying that surface texturing is the most effective contribution to increasing the light extraction efficiency in our design. The angular dependent far-field beam profile is also remarkably changed, compared with the standard Lambertian emission pattern of the conventional square-shaped LEDs. Substantial increase in the EL intensity is evident from both the top surface and the sidewall.  相似文献   

11.
《Comptes Rendus Physique》2018,19(3):113-133
The realization of the first high-brightness blue-light-emitting diodes (LEDs) in 1993 sparked a more than twenty-year period of intensive research to improve their efficiency. Solutions to critical challenges related to material quality, light extraction, and internal quantum efficiency have now enabled highly efficient blue LEDs that are used to generate white light in solid-state lighting systems that surpass the efficiency of conventional incandescent lighting by 15–20×. Here we discuss the initial invention of blue LEDs, historical developments that led to their current state-of-the-art performance, and potential future directions for blue LEDs and solid-state lighting.  相似文献   

12.
对InGaN量子阱LED的内量子效率进行了优化研究。分别对发光光谱、量子阱中的载流子浓度、能带分布、静电场和内量子效应进行了理论分析。对具有不同量子阱数量的InGaN/GaN LED进行了理论数值比对研究。研究结果表明,对于传统结构的LED而言,2个量子阱的结构相对于5个和7个量子阱具有更好的光学性能。同时还研究了具有三角形量子阱结构的LED,研究结果显示,三角形多量子阱结构具有较高的电致发光强度、更高的内量子效率和更好的发光效率,所有的优点都归因于较高的电子-空穴波函数重叠率和低的Stark效应所产生的较高的载流子输入效率和复合发光效率。  相似文献   

13.
Wavelength-dependence of light extraction efficiency (LEE) in AlGaN-based ultraviolet (UV) light-emitting diode (LED) structures is numerically studied based on three-dimensional finite-difference time-domain methods. Due to strong UV light absorption in the p-GaN contact layer, LEE of the UV vertical LED structures remains to be only 6–7 % for the transverse-electric mode and 2–3 % for the transverse-magnetic mode, respectively. The effective LEE of UV LEDs is calculated by considering the optical polarization-dependent LEE, and is found to increase from 4 to 5.5 % as the wavelength increases from 260 to 360 nm. It is shown that the wavelength-dependence of LEE can partially explain the decrease in external quantum efficiency with decreasing wavelengths in AlGaN-based UV LEDs.  相似文献   

14.
Progress with GaN-based light emitting diodes(LEDs) that incorporate nanostructures is reviewed,especially the recent achievements in our research group.Nano-patterned sapphire substrates have been used to grow an Al N template layer for deep-ultraviolet(DUV) LEDs.One efficient surface nano-texturing technology,hemisphere-cones-hybrid nanostructures,was employed to enhance the extraction efficiency of In GaN flip-chip LEDs.Hexagonal nanopyramid GaN-based LEDs have been fabricated and show electrically driven color modification and phosphor-free white light emission because of the linearly increased quantum well width and indium incorporation from the shell to the core.Based on the nanostructures,we have also fabricated surface plasmon-enhanced nanoporous GaN-based green LEDs using AAO membrane as a mask.Benefitting from the strong lateral SP coupling as well as good electrical protection by a passivation layer,the EL intensity of an SP-enhanced nanoporous LED was significantly enhanced by 380%.Furthermore,nanostructures have been used for the growth of GaN LEDs on amorphous substrates,the fabrication of stretchable LEDs,and for increasing the3-d B modulation bandwidth for visible light communication.  相似文献   

15.
马莉  沈光地  陈依新  蒋文静  郭伟玲  徐晨  高志远 《物理学报》2014,63(3):37201-037201
针对AlGaInP系发光二极管(LED)电极阻挡出光、衬底吸收、全反射角小导致器件出光效率低、热积累大、饱和特性差等问题,提出了一种具有复合电流输运增透窗口层、复合DBR反射镜和电流阻挡层结构的新型LED,并测试了其饱和特性和寿命.电流分布模拟显示:新型LED电极下仅存在极小的无效电流;实验结果表明新型LED出光效率高,饱和电流大,饱和电流时光强约为常规LED的3倍,光电性能明显提升.器件饱和特性和老化实验研究显示:新型LED寿命长达17.8×104h,器件内部发热量低,具有高饱和特性和高可靠性,适合在大电流大功率下工作.  相似文献   

16.
We demonstrate the fabrication of hexagonal nano-pillar arrays at the surface of GaN-based light-emitting diodes (LEDs) by nanosphere lithography. By varying the oxygen plasma etching time, we could tune the size and shape of the pillar. The nano-pillar has a truncated cone shape. The nano-pillar array serves as a gradual effective refractive index matcher, which reduces the reflection and increases light cone. It is found that the patterned surface absorbs more pumping light. To compare extraction efficiencies of LEDs, it is necessary to normalize the photoluminescence power spectrum with total absorption rate under fixed pumping power, then we could obtain the correct enhancement factor of the photoluminescence extraction efficiency and optimized structure. The highest enhancement factor of the extraction efficiency is 10.6.  相似文献   

17.
This work is concerned with ion beam dynamics and compares the emittance to aberration ratios of two-and three-electrode extraction systems. The study is conducted with the aid of Version 7 of SIMION 3D ray-tracing software. The beam dependence on various parameters of the extraction systems is studied and the numerical results lead to qualitative conclusions.  相似文献   

18.
A novel method for enhancing light extraction efficiency of LEDs via diffraction of the lattice fabricated in ITO layers of LEDs is proposed. The lattice fabrication process includes holographic lithography and wet etching. 3-beam interference holographic approach was used to fabricate large-area hexagonal lattice mask which can cover 2-inch semiconductor wafer, and acid etching was used to transfer the lattice structure into p-contact ITO layer. 1.4 fold enhancement of light output at 20 mA injection current was obtained from GaN-based LEDs in the primary experiment. The lattice fabrication process is rapid and cost-effective thus enabling industrial mass production of high brightness LEDs.  相似文献   

19.
We theoretically analyze the improvement in light extraction efficiency (LEE) of GaN-based LEDs with transmission grating. Light propagation and extraction was simulated using the finite-difference time-domain (FDTD) method for conical, cylindrical, and hemispherical grating. The simulations show that the use of transmission grating leads to increase in the LEE of GaN-based LEDs. The enhancement in LEE is attributed to the decrease in the Fresnel reflection and the effective increase in the photon escape cone. The maximum LEE enhancement of 2.3 times was achieved by employing hemispherical grating. The directional emission pattern converged by employing conical grating.  相似文献   

20.
Improvement in the light extraction efficiency (LEE) of GaN-based green light emitting diodes (LEDs) with ZnO nanostructures synthesized by a hydrothermal method is reported. Formation of ZnO nanorods, hemispheres, and cones was controlled by varying the pH of the aqueous synthesis solution. The shape of the ZnO nanostructures integrated onto the LEDs shows a strong relationship with the LEE characteristics of GaN-based green LEDs. The electroluminescence (EL) intensity of LEDs covered by ZnO nanostructures increased compared to conventional LEDs. In terms of LEE, LEDs with surface-textured ZnO hemispheres showed the highest EL intensity, which can be attributed to an increase in the effective critical angle, the escape cone, and multiple scattering. Finite difference time domain (FDTD) simulation was conducted to theoretically confirm the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号