首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the co-doping of potassium and bromine in single-walled carbon nanotubes (SWCNTs) and doublewalled carbon nanotubes (DWCNTs) based on density functional theory. In the co-doped (6,0) SWCNTs, the 4s electron of potassium is transferred to nanotube and Br, leading to the n-type feature of SWCNTs. When potassium is intercalated into inner tube and bromine is put on outer tube, the positive and negative charges reside on the outer and inner tubes of the (7,0)@(16,0) DWCNT, respectively. It is expected that DWCNTs would be an ideal candidate for p-n junction and diode applications.  相似文献   

2.
Using density functional theory, we study high hydrogenated zigzag single-walled carbon nanotubes from (7,0) to (11,0). Two structure transitions are classified: type A is a metallic transition and type B is a "semiconductive transition" according to the energy band structure. The charge density transforms only at the C-C bonds without hydrogenated sites. The sp^3 hybridization is mainly enhanced for all the C-C bonds in the vertical axial direction for type-A configurations, and the sp^3 hybridization mainly increases for all C-C bonds along the axial direction for the type-B case.  相似文献   

3.
We studied the stability, geometrical structures and electronic energy band of hexagonal silicon nanotube (SiNT) confined inside carbon nanotubes based on first-principle calculations. The results show that the encapsulating process of SiNT is exothermic in (9,9) carbon nanotube while endothermic in (8,8) and (7,7) carbon nanotubes. When the SiNT is inserted into (9,9) carbon nanotube, the insertion energy is about 0.09 eV. Energy band of SiNT@(9,9) nanotube is not distorted greatly compared with the superposition of bands of isolated SiNT and (9,9) carbon nanotube. Especially, a parabolic band occurs near the Fermi level of energy band in SiNT@(7,7) nanotube. Such a band could be a nearly free electronic state originating from carbon nanotube. Moreover, we discuss the variation of total energy as the SiNT rotates around its axis inside carbon nanotubes.  相似文献   

4.
The Raman signal of gas molecules is very weak due to its small scattering cross section. Here, a near-confocal cavity-enhanced Raman detection system is demonstrated. In the cavity, a high power light of 9W is achieved by using a cw 200mW 532nm laser, which greatly enhances the detection sensitivity of gas species. A photomultiplier tube connected to a spectrometer is used as the detection system. The Raman spectra of the mixed gases separated from transformer oil has been observed. The relationship of absolute Raman intensity and gas pressure is also obtained. To our knowledge, this is the first Raman system to detect the gases separated from transformer oil.  相似文献   

5.
高勇  刘静  杨媛 《中国物理快报》2008,25(6):2285-2288
Temperature-dependent characteristics of SiGeC p-i-n diodes axe analysed and discussed. Based on the ISE data, the temperature-dependent physical models applicable for SiGeC/Si diodes are presented. Due to the addition of carbon into the SiGe system, the thermal stability of SiGeC diodes are improved remarkably. Compared to SiGe diodes, the reverse leakage current of SiGeC diodes is decreased by 97.1% at 400 K and its threshold voltage shift is reduced over 65.3% with an increasing temperature from 300 K to 400 K. Furthermore, the fast and soft reverse recovery characteristics are also obtained at 400 K for SiGeC diodes. As a result, the most remarkable feature of SiGeC diodes is the better high-temperature characteristics and this can be applied to high temperature up to 400 K.  相似文献   

6.
It is demonstrated that defects of any shape or size can be doped in holographic photonic crystals using a cw visible laser and spherical/cylindrical lens. Defects with different sizes at any depth in the material can be obtained by controlling the position of the foca/point of the lens and exposure value. We facilitate the implementation of sub-wavelength arbitrary point or line defects in large-size 2D holographic photonic crystals.  相似文献   

7.
Spiral spectra of vortex beams with coma aberration are studied. It is shown that the orbital angular momentum (OAM) states of vortex beams with coma aberration are different from those aberration-free vortex beams. Spiral spectra of beams with coma aberration are spreading. It is found that in the presence of coma aberration, the vortex beams contain not only the original OAM component but also other components. A larger coma aberration coefficient and/or a larger beam waist will lead to a wider spreading of the spiral spectrum. The results may have potential applications in information encoding and transmittance.  相似文献   

8.
We perform ab initio calculations on the self-assembled base-functionalized single-walled carbon nanotubes (SWNTs) which exhibit the quasi-1D ‘ladder' structure. The optimized configuration in the ab initio calculation is very similar to that obtained from molecular dynamics simulation. We also calculate the electronic structures of the self-assembled base-functionalized SWNTs that exhibit distinct difference from the single-branch base-functionalized SWNT with a localized state lying just below the Fermi level, which may result from the coupling interaction between the bases accompanied by the self-assembly behaviour.  相似文献   

9.
The possibility of formation of complexes between glycine and boron doped C60 (C59B) fullerene is investigated and compared with that of C60 fullerene by using the density functional theory calculations. It has been found that the binding of glycine to C59B generated the most stable complexes via its carbonyl oxygen active site, with a binding energy of-37.89 kcal/mol, while the glycine molecule prefers to bind to the pure C60 cage via its amino nitrogen active site, consistent with the recent experimental and theoretical studies. We have also tested the stability of the most stable Gly-C59B complex with ab initio molecular dynamics simulation, carried out at room temperature. These indicate that the B-doped C60 fullerenes seem to be more suitable materials for bindings to proteins than pure C60 fullerenes.  相似文献   

10.
We theoretically study the electron transport properties for two coupled single-walled caxbon nanotube quantum dots connected to metallic electrodes under the irradiation of an external electromagnetic field at low tempera- tures. Using the standaxd nonequilibrium Green's function techniques, we examine the time-averaged transmission coefficient and linear conductance. It is shown that by some numerical examples, the photon-assisted inter-dot coupling causes Fano resonance and the conductance of the system is sensitive to the external field parameters. The transport dependence on the external field parameters may be used to detect the high-frequency microwave irradiation.  相似文献   

11.
The combined investigation of the chemical bond formation in fluorinated multiwalled carbon nanotubes with 15 wt.% fluorine concentrations (MWCNTs + F 15 wt.%) using X-ray absorption, emission and photoelectron spectroscopy at C 1s and F 1s thresholds is presented. All measurements were performed at BESSY II. The analysis of the soft X-ray and photoelectron spectra point to the formation of covalent chemical bonding between fluorine and carbon atoms in the fluorinated nanotubes. Based on results of this combined study the depth dependent effects are discussed.  相似文献   

12.
Adsorption and reaction of CO on two possible terminations of SrTiO3 (100) surface are investigated by the first-principles calculation of plane wave ultrasoft pseudopotentiai based on the density function theory. The adsorption energy, Mulliken population analysis, density of states (DOS) and electronic density difference of CO on SrTiO3 (100) surface, which have never been investigated before as far as we know are performed. The calculated results reveal that the Ti-CO orientation is the most stable configuration and the adsorption energy (0.449eV) is quite small. CO molecules adsorb weakly on the SrTiO3 (100) surface, there is predominantly electrostatic attraction between CO and the surface rather than a chemical bonding mechanism.  相似文献   

13.
A pressure-induced phase transition and stability in Si2 CN4 polymorphs under high pressure are studied by firstprinciples calculations. The result shows that the phase transition pressure of α- and β-Si2 CN4 to the cubic spinal phase is 29.9 GPa and 27.5 GPa predicted by thermodynamic method respectively. Under ambient condition, all of the three Si2CN4 polymorphs are metastable with positive formation enthalpy. Unlike the stability of Si3N4 polymorphs, α-Si2 CN4 is more stable than the β phase.  相似文献   

14.
We demonstrate the generation of red light femtosecond laser pulses from an intra-cavity frequency-doubled Cr^4+ :forsterite laser. An average output power of 75 mW is obtained at the central wavelength of 647nm with a pulse width of 55 fs by inserting a 500μm-thick BBO crystal in the laser cavity. The bandwidth of the spectrum of second harmonic pulses is 9 nm, corresponding to a time-bandwidth product of 0.355.  相似文献   

15.
The effect of La doping on the electronic structure and optical properties of SrTiO3 and Sr2TiO4 is investigated by the first-principles calculation of plane wave ultrasoft pseudopotential based on the density function theory (DFT). The calculated results reveal that the electron doping in the case of Sr0.875La0.125TiO3 and Sr1.875La0.125TiO4 can be described within the rigid band model. The La3+ ions fully acts as electron donors in Sr0.875La0.125TiO3 and Sr1.875La0.125TiO4 systems and the Fermi level shifts further into the conduction bands (CBs) for Sr1.875La0.125TiO4 compared to Sr0.875La0.125TiO3. The two systems exhibit n-type degenerate semiconductor features. At the same time, the density of states (DOS) of the two systems shift towards low energies and the optical band gaps are broadened. The Sr1.875La0.125TiO4 is highly transparent with the transmittance about 90% in the visible range, which is larger than that of Sr0.875La0.125TiO3(85%). The wide band gap, small transition probability and weak absorption due to the low partial density of states (PDOS) of impurity in the Fermi level result in the optical transparency of the films...  相似文献   

16.
The effect of momentum-dependent interaction on the kinetic energy spectrum of the neutron-proton ratio ( (n/p)gas)b( Ek ) for 64Zn +64Zn is studied. It is found that ( (n/p)gas)b( Ek ) sensitively depends on the momentumdependent interaction and weakly on the in-medium nucleon-nucleon cross section and symmetry potential. Therefore ( (n/p)gas)b( Ek ) is a possible probe for extracting information on the momentum-dependent interaction in heavy ion collisions.  相似文献   

17.
We perform the calculations on geometric and electronic structures of Si-doped heterofullerene C5oSi10 and its derivatives, a C40Si20-C40Si20 dimer and a C40Si20-based nanowire by using density-functional theory, The optimized configuration of the C40Si20-based nanowire exhibits a regular dumbbell-shaped chain nanostructure. The electronic structure calculations indicate that the HOMO-LUMO gaps of the heterofullerene-based materials can be greatly modified by substitutionally doping with Si atoms and show a decreasing trend with increase cluster size. Unlike the band structures of the conventional wide band gap silicon carbide nanomaterials, the C40Si20- based nanowire has a very narrow direct band gap of 0.087eV.  相似文献   

18.
Ag/Cu-doped titania nanotubes (Ag/TiNT, Cu/TiNT) are prepared by a metal vapor vacuum arc implanter. A scanning electronic microscope is employed for microstruetural characterization. The photo-current performance of doped titania nanotubes under UV and visible light is tested by an electrochemical workstation CS300UA, the results show that the absorption edge of both Ag/TiNT and Cu/TiNT samples shifts to the visible light region and the band gap becomes narrower. Ag/TiNT possesses better photo-current ability than Cu/TiNT under UV and visible light. Titania doped with Ag and Cu metal ions is also studied based on the linearized augmented planewave method implemented by WIEN2k package, the result becomes better with the experimental performance.  相似文献   

19.
The quasi-2D electrons in graphene behave as massless fermions obeying a Dirac-Weyl equation in the low-energy regime near the two Fermi points. The stability of spin-polarized phases (SPP) in graphene is considered. The exchange energy is evaluated from the analytic pair-distribution functions, and the correlation energies are estimated via a closely similar four-component 2D electron fluid which has been investigated previously. SPPs appear for sufficiently high doping, when the exchange energy alone is considered. However, the inclusion of correlations is found to suppress the spin-phase transition in ideal graphene.  相似文献   

20.
We discuss various ways to handle self-interaction corrections (SIC) to Density Functional Theory (DFT) calculations. To that end, we use a simple model of few particles in a finite number of states together with a simple zero-range interaction for which full Hartree-Fock can easily be computed as a benchmark. The model allows to shed some light on the balance between orthonormality of the involved states and energy variance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号