首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the first-principles plane-wave basis pseudopotential calculations, we investigate mechanical properties and electronic structures of the hardest known oxide, cotunnite TiO2. The calculated results show that cotunnite TiO2 has the highest bulk modulus (348 GPa) and hardness (32 GPa) among the high-pressure phases of TiO2, but its mechanical properties are not superior to those of c-BN. Moreover, the high hardness of cotunnite TiO2 can be understood from both the dense crystal structure (high valence electron density and short bond lengths) and the unusual mixtures of covalent and ionic bonding of Ti-O.  相似文献   

2.
Structural, elastic and electronic properties of ReO2 are investigated by first-principles calculations based on density functional theory. The ground stateof ReO2 has an orthorhombic symmetry which belongs to space group Pbcn with a=4.7868Å b=5.5736Å, and c=4.5322Å. The calculated bulk moduli are 322GPa, 353GPa, and 345GPa for orthorhombic, tetragonal, and monoclinic ReO2, respectively, indicating that ReO2 has a strong incompressibility. ReO2 is a metal ductile solid and presents large elastic anisotropy. The obtained Debye temperatures are 850K for orthorhombic, 785K for tetragonal, and 791K for monoclinic ReO2.  相似文献   

3.
The pressure dependence of elastic properties of ZnS in zinc-blende (ZB) and wurtzite (WZ) structures are investigated by the generalized gradient approximation (GGA) within the plane-wave pseudopotential density functional theory (DFT). Our results are in good agreement with the available experimental data and other theoretical results. From the high-pressure elastic constants obtained, we find that the ZB and WZ structures of ZnS are unstable when the applied pressures are larger than 15.8 GPa and 21.3 GPa, respectively. The sound velocities along different directions for the two structures are also obtained. It is shown that as pressure increases, the sound velocities of the shear wave decrease, and those of all the longitudinal waves increase. An analysis has been made to reveal the anisotropy and highly noneentral forces in ZnS.  相似文献   

4.
Elastic properties of TaC have been investigated experimentally and by model calculations. The elastic stiffness coefficients c11=597(11) GPa and c44=153(2) GPa were determined on a (100)-oriented disc-shaped monocrystal at room temperature using a plane-wave ultrasound method. The corresponding theoretical values (c11=621(3), c44=166.8(3) GPa) agree within 4 and 8%, respectively. Therefore, we are confident that the predicted value for c12 is equally accurate, and this allows the prediction of the Bulk and Young's moduli and the Poisson ratio. Data published earlier are critically reviewed and predictions concerning the possibility to synthesize extremely incompressible carbides are made.  相似文献   

5.
The equilibrium lattice constants, temperature dependence of bulk modulus, the pressure dependence of the normalized volume V/V0, elastic constants Cij and bulk modulus of LaNi5 crystal are obtained using the firstprincipies piane-wave pseudopotential method in the GGA-PBE generalized gradient approximation as well as the quasi-harmonic Debye model. We analyse the relationship between bulk modulus and temperature up to 2000 K and obtain the relationship between bulk modulus B and pressure at diFFerent temperatures. It is found that the bulk modulus B increases monotonously with increasing pressure. Moreover, the pressure dependences of Debye temperatures and the pressure derivatives of lattice constants are also successfully obtained. The calculated results are in agreement with the experimental data and the other theoretical results.  相似文献   

6.
The equilibrium lattice constants, bulk modulus, shear modulus, elastic constants and Debye temperature of LaNi4.75 Sn0.25 under pressure are calculated using the full-potential linearized augmented plane wave (FP-LAPW) method as well as the quasi-harmonic Debye model. The results at zero pressure are in excellent agreement with the experimental data. The Sn atom is found to occupy the equivalent 3g site (0.5a, 0.75b, 0.5c) in the quadruple cell. The Debye temperature of LaNi4.75Sn0.25 is lower than that of LaNi5. The dependences of bulk modulus on finite temperature and on finite pressure are also investigated. The results show that the bulk modulus B increases monotonously as pressure increases.  相似文献   

7.
M2AlC phases, where M is a transition metal, are layered ternary compounds that possess unusual properties. In this paper, we have calculated the elastic properties of M2AlC, with M=Ti, V, Cr, Nb and Ta, by means of ab initio total energy calculations using the projector augmented-wave method. We have derived the bulk and shear moduli, Young's moduli and Poisson's ratio for ideal polycrystalline M2AlC aggregates. We have estimated the elastic modulus of Cr2AlC with 357.7 GPa while the values of all other phases are in the range 309±10 GPa. We suggest that this can be understood based on the calculated bond energies for the M-C bonds. Furthermore, our results indicate a profound elastic anisotropy of M2AlC even compared to materials with a well-established anisotropic character such as α-alumina. Finally, we have estimated the Debye temperatures of M2AlC from the average sound velocity.  相似文献   

8.
Using first-principles calculations, we have studied the structural and elastic properties of M2SnC, with M=Ti, Zr, Nb and Hf. Geometrical optimization of the unit cell is in good agreement with the available experimental data. The effect of high pressures, up to 20 GPa, on the lattice constants shows that the contractions along the a-axis were higher than those along the c-axis. We have observed a quadratic dependence of the lattice parameters versus the applied pressure. The elastic constants and their pressure dependence are calculated using the static finite strain technique. A linear dependence of the elastic stiffnesses on the pressure is found. We derived the bulk and shear moduli, Young's moduli and Poisson's ratio for ideal polycrystalline M2SnC aggregates. We estimated the Debye temperature of M2SnC from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of Ti2SnC, Zr2SnC, Nb2SnC, and Hf2SnC compounds.  相似文献   

9.
Using ab initio calculations, we have studied the structural, electronic and elastic properties of M2SC, with M = Ti, Zr and Hf. Geometrical optimization of the unit cell are in good agreement with the available experimental data. The band structures show that all three materials are conducting. The analysis of the site and momentum projected densities shows that the bonding is achieved through a hybridization of M-atom d states with S and C-atom p states. The Md-Sp bonds are lower in energy and are stiffer than Md-Cp bonds. The elastic constants are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's moduli and Poisson's ratio for ideal polycrystalline M2SC aggregates. We estimated the Debye temperature of M2SC from the average sound velocity. This is a quantitative theoretical prediction of the elastic properties of Ti2SC, Zr2SC, and Hf2SC compounds, and it still awaits experimental confirmation.  相似文献   

10.
Dependence of bulk modulus on both pressure and temperature, the elastic constants Cij and the pressure and temperature dependence of normalized volume V/Vo of cubic Ni2MnGa alloy are successfully obtained using the first-principles plane-wave pseudopotential (PW-PP) method as well as the quasi-harmonic Debye model. We analyse the relationship between bulk modulus and temperature up to 800 K and obtain the relationships between bulk modulus B and pressures at different temperatures. It is found that the bulk modulus B increases monotonically with increasing pressure. Moreover, the temperature dependences of the Debye temperature are also analysed. The calculated results are in agreement with the available experimental data and the previous theoreticM results.  相似文献   

11.
Using first-principles density functional calculations, the effect of high pressures, up to 40 GPa, on the structural and elastic properties of ANCa3, with A = P, As, Sb, and Bi, were studied by means of the pseudo-potential plane-waves method. Calculations were performed within the local density approximation and the generalized gradient approximation for exchange-correlation effects. The lattice constants are in good agreement with the available results. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus, Poisson's ratio and Lamé's constants for ideal polycrystalline ANCa3 aggregates. By analysing the ratio between the bulk and shear moduli, we conclude that ANCa3 compounds are brittle in nature. We estimated the Debye temperature of ANCa3 from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of PNCa3, AsNCa3, SbNCa3, and BiNCa3 compounds, and it still awaits experimental confirmation.  相似文献   

12.
The ground state properties and equation of state of the non-oxide perovstdte-type superconductor MgCNi3 are investigated by first-principles calculations based on the plane-wave basis set with the local density approximation (LDA) as well as the generalized gradient approximation (GGA) for exchange and correlation, which agree well with both theoretical calculations and experiments. Some thermodynamic properties including the heat capacity, the thermal expansion coefficient and the Griineisen parameter for perovskite structure MgCNi3 are obtained. The dependences of these thermodynamic properties on pressure and temperature are given for the first time.  相似文献   

13.
An investigation of structural stabilities, electronic and optical properties of SrF2 under high pressure is conducted using a first-principles calculation based on density functional theory (DFT) with the plane wave basis set as implemented in the CASTEP code. Our results predict that the second high-pressure phase of SrF2 is of a Ni2In- type structure, and demonstrate that the sequence of the pressure-induced phase transition of SrF2 is the fluorite structure (Fm3m) to the PbC12-type structure (Pnma), and to the Ni2In-type phase (P63/mmc). The first and second phase transition pressures are 5. 77 and 45.58 GPa, respectively. The energy gap increases initially with pressure in the Fm3m, and begins to decrease in the Pnma phases at 30 GPa. The band gap overlap metallization does not occur up to 210 GPa. The pressure effect on the optical properties is discussed.  相似文献   

14.
Nanosecond photoelectric effect is observed in a ZrO2 single crystal at ambient temperature for the first time. The rise time is 20ns and the full width at half maximum is about 30ns for the photovoltaic pulse when the wafer surface of the ZrO2 single crystal is irradiated by 248 nm KrF laser pulses. The experimental results show that ZrO2 single crystals may be a potential candidate in UV photodetectors.  相似文献   

15.
The effect of In doping on the electronic structure and optical properties of Sr2 TiO4 is investigated by a firstprinciples calculation of plane wave ultrasoft pseudopotentials based on density functional theory. The calculated results reveal that corner-shared TiO6 octahedra dominate the main electronic properties of Sr2TiO4 and the covalency of the Ti-O(1) bond in the ab plane is stronger than that of the Ti-O(2) bond along the c-axis. After In doping, there is a little lattice expansion in Sr2In0.125 Ti0.875 O4 and the interaction between the Ti-O bond near the impurity In atom is weakened. The binding energies of Sr2TiO4 and Sr2In0.125Ti0.875O4 estimated from the electronic structure calculations indicate that the crystal structure of Sr2In0.125 Ti0.875 O4 is still stable after doping, but its stability is lower than that of undoped Sr2TiO4. Moreover, the valence bands (VBs) of the Sr2In0.125Ti0.875O4 system consist of O 2p and In 4d states, and the mixing of O 2p and In 4d states makes the top VBs shift significantly to high energies, resulting in visible light absorption. The adsorption of visible light is of practical importance for the application of St2 TiO4 as a photocatalyst.  相似文献   

16.
Large-scale and long-time molecular-dynamics simulations are used to investigate the temperature dependences of elastic properties for amorphous SiO2. The elastic moduli increase in a temperature range up to 1600 K and decrease thereafter. The anomalous behaviour in elasticity is explained by analysing the changes of atomic-scale structure with respect to increment of temperature. The mechanism originates predominantly from distortion of the SiO4 tetrahedra network in low-temperature ranges. At an elevated temperature range, thermal-induced Si-O bond stretching dominates the process and leads to normal temperature dependence of elastic properties.  相似文献   

17.
The effect of La doping on the electronic structure and optical properties of SrTiO3 and Sr2TiO4 is investigated by the first-principles calculation of plane wave ultrasoft pseudopotential based on the density function theory (DFT). The calculated results reveal that the electron doping in the case of Sr0.875La0.125TiO3 and Sr1.875La0.125TiO4 can be described within the rigid band model. The La3+ ions fully acts as electron donors in Sr0.875La0.125TiO3 and Sr1.875La0.125TiO4 systems and the Fermi level shifts further into the conduction bands (CBs) for Sr1.875La0.125TiO4 compared to Sr0.875La0.125TiO3. The two systems exhibit n-type degenerate semiconductor features. At the same time, the density of states (DOS) of the two systems shift towards low energies and the optical band gaps are broadened. The Sr1.875La0.125TiO4 is highly transparent with the transmittance about 90% in the visible range, which is larger than that of Sr0.875La0.125TiO3(85%). The wide band gap, small transition probability and weak absorption due to the low partial density of states (PDOS) of impurity in the Fermi level result in the optical transparency of the films...  相似文献   

18.
Superhard materials have many industrial applications, wherever resistance to abrasion and wear are important. The synthesis of new superhard materials is one of the great challenges to scientists. We re-examined the phase diagram of the binary osmium-boron system and confirmed the existence of two hexagonal phases, OsB1.1, Os2B3, and an orthorhombic phase, OsB2. Almost nothing is known about the physical properties of osmium borides. Microhardness measurements show that OsB2 is extremely hard. Ab initio calculations show that this is due to formation of covalent bonds between boron atoms. OsB2 is also a low compressibility material. It can be used as hard coating.  相似文献   

19.
Lead strontium titanate (Pb0.50Sr0.50)TiO3 (PST) ceramics are prepared by the traditional ceramic processing. The dielectric constants and dielectric loss have been investigated in a temperature range from 25℃ to 300℃. The maximum dielectric constants for unpoled and poled samples are 9924 and 9683, respectively. The temperatures of phase transition for unpoled and poled samples are observed at 153℃ and 157℃, respectively. The phasetransition temperatures for unpoled and poled samples are not equal, which results from the polarization state of the domains. The remnant polarization and the coercive electric field are 18 uC/cm^2 and 6 kV/cm, respectively, from polarization-electric field (P - E) hysteresis loop. The temperature dependence of pyroelectric coefficients of the PST ceramics is measured by a dynamic technique. The dielectric constant and loss Lan δ of the poled PST ceramics are 813 and 0.010, respectively. The pyroelectric coefficients and figure of merit are 294 uC/cm^2 K and 13.6 × 10^-6 pa^-0.5, respectively, at room temperature 25℃and frequency lOOHz.  相似文献   

20.
The phase transition of ZnS from the zincblende (ZB) structure to the rocksalt (RS) structure is investigated by the ab initio plane-wave pseudopotential density functional theory method. It is found that the pressures for transition from the ZB structure to the RS structure are 17.5 GPa from total energy-volume data and 15.4 GPa from equal enthalpies, consistent with the experimental data. From the high pressure elastic constants obtained, we find that the ZB structure ZnS is unstable when the applied pressure is larger than 17 GPa. Moreover, the dependence of the normalized primitive cell volume V/V0 on pressure P can also be successfully obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号