首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of substitutional impurities on the electronic transport properties of graphene
Institution:1. Qatar Environment and Energy Research Institute, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar;2. Department of Physics, King Fahd University of Petroleum and Minerals, 31261 Dhahran, Saudi Arabia;3. Saudi Center for Theoretical Physics, 31261 Dhahran, Saudi Arabia;4. Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium;1. Laboratoire des Matériaux Composites, Polymères et Céramiques, FSS 3018, Université de Sfax, Tunisia;2. Laboratoire de Génie Textile, Université de Monastir, ISET Ksar Hellal, Tunisia;3. College of Engineering, Industrial Engineering Department, Taiba University, Saudi Arabia;4. Laboratoire IMMM, Université du Maine, Le Mans, France;1. Department of Optics and Spectroscopy, Voronezh State University, Voronezh 394006, Russia;2. B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk 220072, Belarus;3. P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia;1. Center for Nanoscience and Nanotechnology, Panjab University, Chandigarh 160014, India;2. Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India;3. Central Scientific Instruments Organization, Sector-30 C, Chandigarh 160030, India;4. Physics of Energy and Harvesting group, National Physical Laboratory, New Delhi 110012, India;1. Physics Department, Faculty of Science and Science Education, School of Science, University of Sulaimani, Kurdistan Region, Iraq;2. Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland;3. Department of Mechanical Engineering, National United University, 1, Lienda, Miaoli 36003, Taiwan;4. School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik, Iceland;1. Physics Department, Belarusian State University, pr. Nezavisimosti 4, Minsk 220030, Belarus;2. Institute for Spectroscopy Russian Academy of Science, Fizicheskaya Str. 5, Troitsk, 142190 Moscow, Russia;3. Moscow Institute of Physics and Technology, Institutskii pereulok 9, Dolgoprudny, 141700 Moscow region, Russia
Abstract:Density-functional theory in combination with the nonequilibrium Green's function formalism is used to study the effect of substitutional doping on the electronic transport properties of hydrogen passivated zig-zag graphene nanoribbon devices. B, N and Si atoms are used to substitute carbon atoms located at the center or at the edge of the sample. We found that Si-doping results in better electronic transport as compared to the other substitutions. The transmission spectrum also depends on the location of the substitutional dopants: for single atom doping the largest transmission is obtained for edge substitutions, whereas substitutions in the middle of the sample give larger transmission for double carbon substitutions. The obtained results are explained in terms of electron localization in the system due to the presence of impurities.
Keywords:Graphene  Transmission  Density functional  Doping
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号