首页 | 本学科首页   官方微博 | 高级检索  
     检索      

FP-1装置铝套筒内爆动力学过程的一维磁流体力学模拟
引用本文:张扬,戴自换,孙奇志,章征伟,孙海权,王裴,丁宁,薛创,王冠琼,沈智军,李肖,王建国.FP-1装置铝套筒内爆动力学过程的一维磁流体力学模拟[J].物理学报,2018,67(8):80701-080701.
作者姓名:张扬  戴自换  孙奇志  章征伟  孙海权  王裴  丁宁  薛创  王冠琼  沈智军  李肖  王建国
作者单位:1. 北京应用物理与计算数学研究所, 北京 100088; 2. 中国工程物理研究院流体物理研究所, 绵阳 621900; 3. 中国工程物理研究院研究生院, 北京 100088
基金项目:国家自然科学基金(批准号:11405012,11675025,11471048,U1630249)、科学挑战专题(批准号:JCKY2016212A502)和计算物理实验室基金资助的课题.
摘    要:作为一种重要的柱面会聚冲击和准等熵压缩加载源,磁驱动固体套筒内爆技术已广泛应用于高能量密度物理实验研究.针对FP-1装置驱动的固体套筒内爆动力学过程,建立了含强度的一维磁流体力学模型,并对典型实验进行了模拟.计算获得的套筒内爆速度同实验结果较为相符.模拟结果显示,该装置在40 kV充压条件下,可以将直径3 cm,厚0.5 mm的铝套筒加速至1.1 km/s,内壁速度超过1.5 km/s,同时保持大部分材料为固体状态.内爆套筒与相同材料靶筒碰撞产生的冲击压力约9 GPa.改变靶筒内部填充气体的压力,可以获得不同的靶筒运动速度、轨迹以及反弹半径,以满足不同类型实验的研究需要.

关 键 词:固体套筒  磁流体力学模拟  FP-1装置  高能量密度物理
收稿时间:2017-10-25

One-dimensional magneto-hydrodynamics simulation of magnetically driven solid liner implosions on FP-1 facility
Zhang Yang,Dai Zi-Huan,Sun Qi-Zhi,Zhang Zheng-Wei,Sun Hai-Quan,Wang Pei,Ding Ning,Xue Chuang,Wang Guan-Qiong,Shen Zhi-Jun,Li Xiao,Wang Jian-Guo.One-dimensional magneto-hydrodynamics simulation of magnetically driven solid liner implosions on FP-1 facility[J].Acta Physica Sinica,2018,67(8):80701-080701.
Authors:Zhang Yang  Dai Zi-Huan  Sun Qi-Zhi  Zhang Zheng-Wei  Sun Hai-Quan  Wang Pei  Ding Ning  Xue Chuang  Wang Guan-Qiong  Shen Zhi-Jun  Li Xiao  Wang Jian-Guo
Institution:1. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 2. Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China; 3. Graduate School of China Academy of Engineering Physics, Beijing 100088, China
Abstract:As an important cylindrical-convergent drive technology, magnetically driven solid liner implosion has been widely used in the high energy density physics (HEDP) experiments for different researches, such as the properties of condensed matter at an extreme pressure, the hydrodynamic behaviors of imploding systems, and the properties and behaviors of dense plasmas. On the 2.2 MA FP-1 facility (with a rise time of 7 μs), implosions of aluminum liners and their impact on target liners are studied experimentally for exploring the applications of instability and ejecta mixing. A one-dimensional Lagrangian code–MADE1D is developed to study liner implosions numerically, which is based on magneto-hydrodynamics model with material strength, wide-range equation of state, Lee-More conductivity, and SCG (Steinberg, Cochran and Guinan) constitutive model. The code is based on the finite difference method. The finite difference equations are written in the covariant form for both Cartesian and cylindrical coordinates which enables the accurate simulation of different load geometries. Numerical results, such as the simulated velocity and radius at inner surface of the liner and target, agree well with the measurements. It shows that FP-1 has the ability to accelerate a 0.5 mm thick aluminum liner with an initial radius of 1.5 mm to a speed of more than 1.1 km/s, and the corresponding velocity of inner surface is more than 1.5 km/s due to the cylindrical convergence effect. In our calculation, most of the liner keeps solid throughout the implosion, though its outer surface is melted due to the Ohmic heating. A cylindrical converging shock about 8-10 GPa can be obtained by setting a target with an initial radius of 8-11 mm inside the liner coaxially. The numerical results show that since the imploding liner is fully magnetized when it impacts the target, the shock and the corresponding reflect release wave run faster than in the unmagnetized target. This means that the target will spall near the liner-target interface, though they are impedance-matched acoustically. The movement of the shocked target can be affected by the pre-filled gas inside. Increasing the gas pressure makes the target lose its velocity quickly, and the rebound radius increases as well. By adjusting the load design and gas pressure appropriately, we can obtain the right implosion process to meet the study requirement.
Keywords:solid liner  magneto-hydrodynamics simulation  FP-1 facility  high energy density physics
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号