首页 | 本学科首页   官方微博 | 高级检索  
     检索      

宽绝对禁带的一维磁性光子晶体结构
引用本文:陈敏,万婷,王征,罗朝明,刘靖.宽绝对禁带的一维磁性光子晶体结构[J].物理学报,2017,66(1):14204-014204.
作者姓名:陈敏  万婷  王征  罗朝明  刘靖
作者单位:湖南理工学院 信息与通信工程学院, 复杂工业物流系统智能控制与优化湖南省重点实验室, 岳阳 414006
基金项目:国家自然科学基金(批准号:61205126)、湖南省科技计划项目(批准号:2016TP1021)和湖南省和湖南理工学院大学生实验项目(批准号:湘教通[2016]283号,校[2016]21号)资助的课题.
摘    要:提出了一种具有宽绝对禁带的一维磁性光子晶体结构,该结构由相同的折射率和物理厚度以及不同的波阻抗的两种磁性材料交替组合而成.通过传输矩阵法分析可得,相比于非磁性光子晶体,该光子晶体的禁带对入射角和偏振都不敏感,从而具有更宽的绝对禁带.合适地调节两种磁性材料的参数,增加两者波阻抗的差值,该光子晶体的绝对禁带宽度也相应地增加;调节两种磁性材料的物理厚度,其绝对禁带中心也会随之调整;最后,将两个满足上述条件的一维磁性光子晶体组成异质结构,其第一禁带宽度与禁带中心之间的比值可达到1.41以上.

关 键 词:绝对禁带  光子晶体  磁性材料
收稿时间:2016-04-22

One-dimensional magnetic photonic crystal structures with wide absolute bandgaps
Chen Min,Wan Ting,Wang Zheng,Luo Zhao-Ming,Liu Jing.One-dimensional magnetic photonic crystal structures with wide absolute bandgaps[J].Acta Physica Sinica,2017,66(1):14204-014204.
Authors:Chen Min  Wan Ting  Wang Zheng  Luo Zhao-Ming  Liu Jing
Institution:Key Laboratory of Hunan Province on Intelligent Control and Optimization of Complex Industrial Logistics System, College of Information and Telecommunications Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
Abstract:The photonic absolute bandgaps have many potential applications in specific fields, and some methods to enlarge the absolute bandgaps, such as adjusting the material and the rotational symmetry, constituting a heterostructure have been explored. Recently, with the occurring of metamaterial, the photonic crystal based on metamaterial has also realized the wide absolute bandgaps. However, the metamaterial is an artificially structured material of which the construction is more complicated. In this paper, one-dimensional magnetic photonic crystal structure with wide absolute bandgaps is proposed, which is composed of two kinds of magnetic materials with the same refractive index and physical thickness but different wave impedances. First of all, the transmission properties of one-dimensional magnetic and non-magnetic photonic crystals with the same wave impedance ratio are studied by using transfer matrix method. It is shown that the normalized frequency bandwidth of magnetic photonic crystal, i. e. the ratio of the band of bandgap to its center, is 0.41, while the normalized frequency bandwidth of the non-magnetic photonic crystal is 0.14. From the results, we can conclude that the absolute bandgap of the above magnetic photonic crystal is wider than that of non-magnetic photonic crystal because the former bandgap is not sensitive to the incident angle nor polarization. Secondly, we adjust the wave impedance ratios of the two kinds of magnetic materials and make them respectively reach 2, 4 and 6, with the refractive index and the physical thickness kept unchanged. By analyzing their transmission properties, it is found that the normalized frequency bandwidths of the absolute bandgaps are respectively 0.47, 0.84 and 1.03, and the greater the difference between the two wave impedances, the wider the normalized frequency bandwidth is. Thirdly, we investigate the influence of the per-layer physical thickness of the magnetic material on the bandgap, with the other parameters remaining unchanged. It is shown that the center of the absolute bandgap shifts toward high frequency with the decrease of the per-layer physical thickness. Finally, a kind of heterostructure is constructed by the above two one-dimensional magnetic photonic crystals. The normalized frequency ranges of the first and the second absolute bandgap of one magnetic photonic crystal structure are respectively 1.18-2.85 and 5.37-6.85. The normalized frequency range of the absolute bandgap of the other magnetic photonic crystal is 2.37-5.68. The normalized frequency range of the absolute bandgap of the heterostructure can be enlarged to 1.18-6.85 and the corresponding normalized frequency bandwidth can reach more than 1.41. The wide absolute bandgaps can be applied to integrated optics, optical fiber communication and high-power laser systems, according to which we may design the polarization-independent and omnidirectional devices such as reflectors, optical switchers and optical filters.
Keywords:absolute bandgap  photonic crystals  magnetic material
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号