首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Exciplex Emission from a Boron Dipyrromethene (Bodipy) Dye Equipped with a Dicyanovinyl Appendage
Authors:Adela Nano  Dr Raymond Ziessel  Patrycja Stachelek  Dr Mohammed A H Alamiry  Prof Dr Anthony Harriman
Institution:1. LCOSA, ICPEES, UMR7515, CNRS/Université de Strasbourg/ECPM, 25 rue Becquerel, 67087 Strasbourg, Cedex 02 (France), Fax: (+33)?3‐68‐85‐27‐61 http://icpees.unistra.fr/lcosa/;2. Molecular Photonics Laboratory, School of Chemistry, Bedson Bldg. Newcastle University, Newcastle upon Tyne, NE1 7RU (UK), Fax: (+44)?1912228660 http://ncl.ac.uk/mpl
Abstract:The photophysical properties of a prototypic donor–acceptor dyad, featuring a conventional boron dipyrromethene (Bodipy) dye linked to a dicyanovinyl unit through a meso‐phenylene ring, have been recorded in weakly polar solvents. The absorption spectrum remains unperturbed relative to that of the parent Bodipy dye but the fluorescence is extensively quenched. At room temperature, the emission spectrum comprises roughly equal contributions from the regular π, π* excited‐singlet state and from an exciplex formed by partial charge transfer from Bodipy to the dicyanovinyl residue. This mixture moves progressively in favor of the locally excited π, π* state on cooling and the exciplex is no longer seen in frozen media; the overall emission quantum yield changes dramatically near the freezing point of the solvent. The exciplex, which has a lifetime of approximately 1 ns at room temperature, can also be seen by transient absorption spectroscopy, in which it decays to form the locally excited triplet state. Under applied pressure (P<170 MPa), formation of the exciplex is somewhat hindered by restricted rotation around the semirigid linkage and again the emission profile shifts in favor of the π, π* excited state. At higher pressure (170<P<550 MPa), the molecule undergoes reversible distortion that has a small effect on the yield of π, π* emission but severely quenches exciplex fluorescence. In the limiting case, this high‐pressure effect decreases the molar volume of the solute by approximately 25 cm3 and opens a new channel for nonradiative deactivation of the excited‐state manifold.
Keywords:donor–  acceptor systems  dyes/pigments  exciplexes  fluorescence  photophysics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号