首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microstructure and fracture behavior of semicrystalline polymer–clay nanocomposites
Authors:Hong‐Nga Vu  Alexandre Vermogen  Catherine Gauthier  Karine Masenelli‐Varlot  Jean‐Yves Cavaillé
Institution:Université de Lyon, INSA‐Lyon, MATEIS, UMR CNRS 5510, bat B. Pascal, 7 av. J. Capelle, 69621 Villeurbanne Cedex, France
Abstract:The relationships between the microstructure and the fracture behavior of three polymer/clay nanocomposites were studied. Two different polymer matrices were chosen, namely polyamide‐6 and polyethylene (compatibilized with PE‐g‐MA or PE‐g‐PEo), to reach very different clay dispersion states. The microstructure was characterized in terms of polymer crystallinity, orientation of the polymer crystalline lamellae, clay dispersion state, and orientation of the clay tactoids. The mechanical behavior was characterized by tensile tests. The essential work of fracture (EWF) concept was used to determine the fracture behavior of the nanocomposites. Both tensile and EWF tests were performed in two perpendicular directions, namely longitudinal and transversal. It is shown that the fracture behaviors of the matrices mainly depend on the polymer crystalline lamellae orientation. For the nanocomposites, the relationships between the matrix orientation, the clay dispersion states, the values of the EWF parameters (we and βwp), and their anisotropy are discussed. The results show that the lower the average clay tactoid thickness, the lower is the decrease of fracture performance for the nanocomposite and the more consumed energy as longer the path of the crack. Besides, a linear dependence of the anisotropy of the EWF parameters of the nanocomposites on the average clay aspect ratio is found. The more exfoliated the structure is, the less pronounced the anisotropy of the EWF parameters. Interestingly, it is thought that the average clay aspect ratio is the parameter representing the clay dispersion state that governs the fracture anisotropy of the nanocomposites (as the elastic properties determined by tensile tests). © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1820–1836, 2008
Keywords:essential work of fracture  microstructure  morphology  nanocomposite  polyamide  polyethylene
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号