首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Generation of optically active states in a-SiNx by thermal treatment
Authors:Changhun Ko  Hyun-Joon Shin
Institution:a Department of Physics, University of Seoul, Seoul 130-743, Republic of Korea
b Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
Abstract:Amorphous silicon nitride (a-SiNx) films were deposited using plasma-enhanced chemical-vapor deposition (PECVD) and subsequently, thermal annealing processes were performed at 700-1000 °C in the ultra-high vacuum (UHV) condition. A strong photoluminescence (PL) peak induced by luminescent defect centers was observed at 710 nm for the as-deposited sample. When the sample was annealed at 700-1000 °C, the PL peak intensity became about 3-12 times stronger with no shift of the PL peak. To investigate the origin of the change in PL peak intensity after the thermal annealing, Si 2p and N 1s core-level spectra were systematically analyzed by high-resolution photoemission spectroscopy (HRPES) using synchrotron radiation. In particular, N 1s spectra were decomposed with three characteristic nitrogen-bonding states. It is revealed that the nitrogen bonding state with N-Si and NSi2 configurations (denoted as N3) contributes mainly to the change in PL peak intensity. We note that luminescent nitrogen related defect centers such as N4+ and N2° are localized in the state N3. Detailed analysis of the experimental results shows that the state N3 is located in the interface bounded by the region of the nano-sized stoichiometric silicon nitride Si3N4 (denoted as N1) and is considerably influenced by the thermal annealing, which is an appropriate process to cause strong photoluminescence of the related samples as mentioned above.
Keywords:SiNx  Photoluminescence  High-resolution photoemission spectroscopy  Optically active intermediate states
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号