首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Superhydrophobic cotton fabric fabricated by electrostatic assembly of silica nanoparticles and its remarkable buoyancy
Authors:Yan Zhao
Institution:Centre for Material and Fibre Innovation, Deakin University, Geelong, VIC 3217, Australia
Abstract:Highly hydrophilic cotton fabrics were rendered superhydrophobic via electrostatic layer-by-layer assembly of polyelectrolyte/silica nanoparticle multilayers on cotton fibers, followed with a fluoroalkylsilane treatment. The surface morphology of the silica nanoparticle-coated fibers, which results in the variety of the hydrophobicity, can be tailored by controlling the multilayer number. Although with the static contact angle larger than 150°, in the case of 1 or 3 multilayers, the fabrics showed sticky property with a high contact angle hysteresis (>45°). For the cotton fabrics assembled with 5 multilayers or more, slippery superhydrophobicity with a contact angle hysteresis lower than 10° was achieved. The buoyancy of the superhydrophobic fabric was examined by using a miniature boat made with the fabric. The superhydrophobic fabric boat exhibited a remarkable loading capacity; for a boat with a volume of 8.0 cm3, the maximum loading was 11.6 or 12.2 g when the boat weight is included. Moreover, the superhydrophobic cotton fabric showed a reasonable durability to withstand at least 30 machine washing cycles.
Keywords:Cotton fabrics  Superhydrophobic  Layer-by-layer assembly  Self-cleaning  Water-repellency
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号