首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The inhibition of liposaccharide heptosyltransferase WaaC with multivalent glycosylated fullerenes: a new mode of glycosyltransferase inhibition
Authors:Durka Maxime  Buffet Kevin  Iehl Julien  Holler Michel  Nierengarten Jean-François  Vincent Stéphane P
Institution:Chemistry Department, University of Namur (FUNDP) rue de Bruxelles 61, 5000 Namur, Belgium.
Abstract:L,D-Heptosides (L-glycero-D-manno-heptopyranoses) are found in important bacterial glycolipids such as lipopolysaccharide (LPS), the biosynthesis of which is targeted for the development of novel antibacterial agents. This work describes the synthesis of a series of fullerene hexa-adducts bearing 12 copies of peripheral sugars displaying the mannopyranose core structure of bacterial L,D-heptoside. The multimers were assembled through an efficient copper-catalyzed alkyne-azide cycloaddition reaction as the final step. The final fullerene sugar balls were assayed as inhibitors of heptosyltransferase WaaC, the glycosyltransferase catalyzing the incorporation of the first L-heptose into LPS. Interestingly, the inhibition of the final molecules was found in the low micromolar range (IC(50) =7-45 μM), whereas the corresponding monomeric glycosides displayed high micromolar to low millimolar inhibition levels (IC(50) always above 400 μM). When evaluated on a "per-sugar" basis, these inhibition data showed that, in each case, the average affinity of a single glycoside of the fullerenes towards WaaC was significantly enhanced when displayed as a multimer, thus demonstrating an unexpected multivalent effect. To date, such a multivalent mode of inhibition had never been evidenced with glycosyltransferases.
Keywords:cell wall  fullerenes  heptose  inhibitors  multivalence  virulence
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号