首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   3篇
化学   7篇
  2022年   1篇
  2020年   1篇
  2018年   2篇
  2014年   1篇
  2012年   2篇
排序方式: 共有7条查询结果,搜索用时 62 毫秒
1
1.
2.
Small chemical/biological interaction pairs are at the forefront in tracing protein function and interaction at high signal‐to‐background ratios in cellular pathways. However, the optimal design of scaffold, linker, and chelator head still deserve systematic investigation to achieve the highest affinity and kinetic stability for in vitro and especially cellular applications. We report on a library of N‐nitrilotriacetic acid (NTA)‐based multivalent chelator heads (MCHs) built on linear, cyclic, and dendritic scaffolds and compare these with regard to their binding affinity and stability for the labeling of cellular His‐tagged proteins. Furthermore, we describe a new approach for tracing cellular target proteins at picomolar probe concentrations in cells. Finally, we outline fundamental differences between the MCH scaffolds and define a cyclic trisNTA chelator that displays the highest affinity and kinetic stability of all reported reversible, low‐molecular‐weight interaction pairs.  相似文献   
3.
The adsorption of multivalent thiols on gold (111) surface was investigated using density functional theory applying the Perdew–Burke–Ernzerhof functional. Through the comparison of differences in energetics, structure and charge density distribution of a set of monodentate and polydentate thiols, we have described in detail the factors affecting the adsorption energy and the role played by the multivalence, which causes a decreasing of adsorption energy because of both electronic and steric hindrance effects. Finally, the comparison between the adsorption of 1,2‐ and 1,3‐disulfides revealed how the chain length may affect the cleavage of the S? S bond when they adsorb on Au(111) surface. © 2013 Wiley Periodicals, Inc.  相似文献   
4.
L,D-Heptosides (L-glycero-D-manno-heptopyranoses) are found in important bacterial glycolipids such as lipopolysaccharide (LPS), the biosynthesis of which is targeted for the development of novel antibacterial agents. This work describes the synthesis of a series of fullerene hexa-adducts bearing 12 copies of peripheral sugars displaying the mannopyranose core structure of bacterial L,D-heptoside. The multimers were assembled through an efficient copper-catalyzed alkyne-azide cycloaddition reaction as the final step. The final fullerene sugar balls were assayed as inhibitors of heptosyltransferase WaaC, the glycosyltransferase catalyzing the incorporation of the first L-heptose into LPS. Interestingly, the inhibition of the final molecules was found in the low micromolar range (IC(50) =7-45 μM), whereas the corresponding monomeric glycosides displayed high micromolar to low millimolar inhibition levels (IC(50) always above 400 μM). When evaluated on a "per-sugar" basis, these inhibition data showed that, in each case, the average affinity of a single glycoside of the fullerenes towards WaaC was significantly enhanced when displayed as a multimer, thus demonstrating an unexpected multivalent effect. To date, such a multivalent mode of inhibition had never been evidenced with glycosyltransferases.  相似文献   
5.
We introduce divalent 3D DNA origami cuboids as truly monodisperse colloids and harness their ability for precision functionalization with defined patches and defined numbers of supramolecular binding motifs. We demonstrate that even adamantane/β‐cyclodextrin host/guest inclusion complexes of moderate association strength can induce efficient supracolloidal fibrillization at high dilution of the 3D DNA Origami as a result of cooperative multivalency. We show details on the assembly of Janus and non‐Janus 3D DNA origami into supracolloidal homo‐ and heterofibrils with respect to multivalency effects, electrostatic screening, and stoichiometry. We believe that the merger of 3D DNA origami with colloidal self‐assembly and supramolecular motifs provides new synergies at the interface of these disciplines to better understand multivalency effects, to promote structural complexity, and add non‐DNA assembling and switching mechanisms to DNA nanoscience.  相似文献   
6.
7.
Multivalent protein‐carbohydrate interactions are involved in the initial stages of many fundamental biological and pathological processes through lectin–carbohydrate binding. The design of high affinity ligands is therefore necessary to study, inhibit and control the processes governed through carbohydrate recognition by their lectin receptors. Carbohydrate‐functionalised gold nanoclusters (glyconanoparticles, GNPs) show promising potential as multivalent tools for studies in fundamental glycobiology research as well as biomedical applications. Here we present the synthesis and characterisation of galactose functionalised GNPs and their effectiveness as binding partners for PA‐IL lectin from Pseudomonas aeruginosa. Interactions were evaluated by hemagglutination inhibition (HIA), surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) assays. Results show that the gold nanoparticle platform displays a significant cluster glycoside effect for presenting carbohydrate ligands with almost a 3000‐fold increase in binding compared with a monovalent reference probe in free solution. The most effective GNP exhibited a dissociation constant (Kd) of 50 nM per monosaccharide, the most effective ligand of PA‐IL measured to date; another demonstration of the potential of glyco‐nanotechnology towards multivalent tools and potent anti‐adhesives for the prevention of pathogen invasion. The influence of ligand presentation density on their recognition by protein receptors is also demonstrated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号