首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Application of a cellulose phosphate ion exchange membrane as a binding phase in the diffusive gradients in thin films technique for measurement of trace metals
Authors:W LiH Zhao  PR TeasdaleR John  S Zhang
Institution:School of Environmental and Applied Sciences, Faculty of Environmental Sciences, Griffith University, Gold Coast Campus, PMB 50 Gold Coast Mail Centre, 9726 Gold Coast, Qld, Australia
Abstract:The technique of diffusive gradients in thin films (DGT) is a newly developed analytical technique capable of measuring in situ concentrations of trace metals in the environment. The technique employs a thin film diffusive hydrogel (with well-defined diffusion properties) in contact with a binding phase capable of binding metal ions of interest. In this work, we demonstrate, for the first time, the use of a commercially available solid ion exchange membrane (Whatman P81) as the binding phase in DGT analysis. The cellulose phosphate-based Whatman P81 membrane is a strong cation exchange membrane. Its performance characteristics as a new binding phase in DGT measurement of Cu2+ and Cd2+ were systematically investigated. Several advantages over the conventional ion exchange resin-embedded hydrogel binding phases used in DGT were observed including simple preparation, ease of handling, and reusability. The binding capacities of the material to various metal ions were examined both collectively and individually. The binding phase preferentially binds to transition metal ions rather than matrix ions such as potassium, sodium, calcium and magnesium, which are competitive species in natural waters. Within the optimum pH range (pH 4.0-9.0), the maximum non-competitive binding capacities of the membrane for Cu2+ and Cd2+ were 3.22 and 3.07 μmol cm−2, respectively. The suitability of the new membrane-based binding phase for DGT applications was validated experimentally. The experimental results demonstrated excellent agreement with theoretically predicted trends. The measurement was not degraded after four consecutive reuses of the cellulose phosphate binding phase.
Keywords:Diffusive gradients in thin films  Cellulose phosphate  Ion exchange membrane  Copper  Cadmium
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号