首页 | 本学科首页   官方微博 | 高级检索  
     检索      

偏压控制Cu2O和Cu在TiO2表面的生长及其光电化学性质
引用本文:姜春香,胡玉祥,董雯,郑分刚,苏晓东,方亮,沈明荣.偏压控制Cu2O和Cu在TiO2表面的生长及其光电化学性质[J].物理化学学报,2014,30(10):1867-1875.
作者姓名:姜春香  胡玉祥  董雯  郑分刚  苏晓东  方亮  沈明荣
作者单位:Jiangsu Key Laboratory of Thin Films, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, Jiangsu Province, P. R. China
基金项目:supported by the National Natural Science Foundation of China(91233109,51272166,11004146);Natural Science Foundation of Jiangsu Province,China(BK2012622);Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China~~
摘    要:基于TiO2/Ti电极在含Cu2+溶液中的循环伏安图,调节电沉积的沉积电压,我们在TiO2平整表面制备出Cu2O和/或Cu颗粒.通过扫描电镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)表征,发现Cu2O和Cu有不同的生长机制:Cu2O颗粒在TiO2表面分散结晶,而Cu颗粒是在已生长的颗粒上成核,从而形成堆积颗粒结构.这是由于在Cu2O/TiO2界面和Cu/TiO2界面形成不同的能带结构,使得电子的转移方式不同.与纯TiO2光阳极比较,可以观察到Cu2O/TiO2和Cu/TiO2异质结构的光电流均有显著增强.特别地,存在一个电压区间使得Cu2O和Cu同时生长在TiO2表面,此时对应的光电流比较稳定并且能达到最大.紫外-可见(UV-Vis)漫反射光谱、电化学阻抗谱(EIS)和光电流-电压特性曲线均显示,Cu2O和Cu明显有助于光的可见光吸收,同时Cu/TiO2在光电转换过程中显示更宽波段的可见光利用率.此外,开路电压的增加、有效的电荷分离和电极/电解质界面上载流子的快速迁移也增强了材料的光电化学性质.

关 键 词:氧化亚铜    电化学沉积  光电化学性质  二氧化钛薄膜  
收稿时间:2014-04-30

Bias-Determined Cu2O and Cu Growth on TiO2 Surface and Their Photoelectrochemical Properties
JIANG Chun-Xiang;HU Yu-Xiang;DONG Wen;ZHENG Fen-Gang;SU Xiao-Dong;FANG Liang;SHEN Ming-Rong.Bias-Determined Cu2O and Cu Growth on TiO2 Surface and Their Photoelectrochemical Properties[J].Acta Physico-Chimica Sinica,2014,30(10):1867-1875.
Authors:JIANG Chun-Xiang;HU Yu-Xiang;DONG Wen;ZHENG Fen-Gang;SU Xiao-Dong;FANG Liang;SHEN Ming-Rong
Institution:Jiangsu Key Laboratory of Thin Films, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, Jiangsu Province, P. R. China
Abstract:Based on the cyclic voltammogram (CV) of TiO2/Ti electrodes in Cu2+ ion solution, we fabricated Cu2O and Cu particles onto TiO2 flat surfaces separately or simultaneously by adjusting the applied potentials during electrodeposition. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) showed that Cu2O and Cu have different growth modes: Cu2O particles crystallize on the TiO2 surface separately while Cu particles nucleate on previously grown particles, forming a stacked particle structure. This growth behavior can be explained by the different electron transfer behavior on the Cu2O/TiO2 and Cu/TiO2 interfaces and this is determined by their bandgap alignments. Compared with a pure TiO2 photoanode, a significant enhancement of the photocurrent was observed for both the Cu2O/TiO2 and Cu/TiO2 heterostructures. A potential region exists where Cu2O and Cu grow on the TiO2 surface simultaneously and the corresponding photocurrent is relatively stable and reaches a maximum. UV-Vis diffuse reflectance spectroscopy, electrochemical impedance spectroscopy (EIS), and photocurrent vs potential characteristics revealed that the visible light absorption by Cu2O and Cu contributes significantly to the photocurrent. Cu/TiO2 resulted in greater broadband visible light utilization during the photoelectric conversion. Additionally, the increased zero-current potential and the effective charge separation as well as the rapid carrier transfer on the electrode/electrolyte interface are also related to the enhanced photoelectrochemical properties.
Keywords:Cuprous oxide  Copper  Electrochemical deposition  Photoelectrochemical property  Titatium oxide film  
本文献已被 CNKI 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号