首页 | 本学科首页   官方微博 | 高级检索  
     检索      

强直流场介质表面次级电子倍增效应的数值模拟研究
引用本文:蔡利兵,王建国,朱湘琴.强直流场介质表面次级电子倍增效应的数值模拟研究[J].物理学报,2011,60(8):85101-085101.
作者姓名:蔡利兵  王建国  朱湘琴
作者单位:1. 西北核技术研究所, 西安 710024; 2. 西安交通大学电子与信息工程学院,西安 710049
摘    要:通过粒子模拟方法,实现了强直流场下介质表面击穿过程中次级电子倍增效应的数值模拟.具体研究了强直流场场强、介质表面光滑度和次级电子产生率等对次级电子倍增的影响,以及倾斜直流场和外加磁场对次级电子倍增的抑制.结果表明,选择次级电子产生率较低的介质材料和倾斜强直流场可以有效降低次级电子倍增效应的强度,而外加磁场必须超过一定值时才可以有效降低次级电子倍增强度. 关键词: 次级电子倍增 强直流场 介质表面击穿 数值模拟

关 键 词:次级电子倍增  强直流场  介质表面击穿  数值模拟
收稿时间:2010-05-16

Numerical simulation of multipactor on dielectric surface in high direct current field
Cai Li-Bing,Wang Jian-Guo and Zhu Xiang-Qin.Numerical simulation of multipactor on dielectric surface in high direct current field[J].Acta Physica Sinica,2011,60(8):85101-085101.
Authors:Cai Li-Bing  Wang Jian-Guo and Zhu Xiang-Qin
Institution:Cai Li-Bing1) Wang Jian-Guo1)2) Zhu Xiang-Qin1) 1)(Northwest Institute of Nuclear Technology,Xi'an 710024,China) 2)(School of Electronic and Information Engineering,Xi'an Jiaotong University,Xi'an 710049,China)
Abstract:The numerical simulation of multipactor in the dielectric surface breakdown in high direct current field is realized by using the particle-in-cell method. And the influence of the strength of the high direct current field, smoothness of the dielectric surface and secondary electron yield coefficient on the multipactor are researched through the simulation of multipactor. Finally, the influence of the tilting of high direct current field and external magnetic field on the multipactor are also investigated. The results show that selecting of the dielectric with low secondary electron yield coefficient and tilting of high direct current field can reduce the degree of multipactor, and for the external magnetic field the degree of multipactor decreases effectively only when the external magnetic field exceeds a certain value.
Keywords:multipactor  high direct current field  dielectric surface breakdown  numerical simulation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号