首页 | 本学科首页   官方微博 | 高级检索  
     检索      

加载功率与壳温对AlGaN/GaN高速电子迁移率晶体管器件热阻的影响
引用本文:郭春生,李世伟,任云翔,高立,冯士维,朱慧.加载功率与壳温对AlGaN/GaN高速电子迁移率晶体管器件热阻的影响[J].物理学报,2016,65(7):77201-077201.
作者姓名:郭春生  李世伟  任云翔  高立  冯士维  朱慧
作者单位:1. 北京工业大学电子信息与控制工程学院, 北京 100124; 2. 中国电子技术标准化研究所, 北京 100176
基金项目:国家自然科学基金(批准号: 61204081)和北京市教委基金(批准号: KM201510005008)资助的课题.
摘    要:结温是制约器件性能和可靠性的关键因素, 通常利用热阻计算器件的工作结温. 然而, 器件的热阻并不是固定值, 它随器件的施加功率、温度环境等工作条件的改变而变化. 针对该问题, 本文以CREE公司生产的高速电子迁移率晶体管(HEMT)器件为研究对象, 利用红外热像测温法与Sentaurus TCAD模拟法相结合, 测量研究了AlGaN/GaN HEMT器件在不同加载功率以及管壳温度下热阻的变化规律. 研究发现: 当器件壳温由80 ℃升高至130 ℃时, 其热阻由5.9 ℃/W变化为6.8 ℃/W, 增大15%, 其热阻与结温呈正反馈效应; 当器件的加载功率从2.8 W增加至14 W时, 其热阻从5.3 ℃/W变化为6.5 ℃/W, 增大22%. 对其热阻变化机理的研究发现: 在不同的管壳温度以及不同的加载功率条件下, 由于材料导热系数的变化导致其热阻随温度与加载功率的变化而变化.

关 键 词:AlGaN/GaN高速电子迁移率晶体管  热阻  红外热像测温法  Sentaurus  TCAD模拟
收稿时间:2015-12-21

Influence of power dissipation and case temperature on thermal resistance of AlGaN/GaN high-speed electron mobility transistor
Guo Chun-Sheng,Li Shi-Wei,Ren Yun-Xiang,Gao Li,Feng Shi-Wei,Zhu Hui.Influence of power dissipation and case temperature on thermal resistance of AlGaN/GaN high-speed electron mobility transistor[J].Acta Physica Sinica,2016,65(7):77201-077201.
Authors:Guo Chun-Sheng  Li Shi-Wei  Ren Yun-Xiang  Gao Li  Feng Shi-Wei  Zhu Hui
Institution:1. College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China; 2. China Electronics Standardization Institute, Beijing 100176, China
Abstract:The junction temperature is a main factor affecting the device performance and reliability. The thermal resistance is usually used to calculate the junction temperature. However, the thermal resistance is not constant under different operating conditions. In this work, we examine the high-speed electron mobility transistor (HEMT) from the CREE Company to investigate its thermal resistances under different case temperatures and dissipation powers. To avoid the self-oscillating phenomenon of the HEMT device, a circuit is designed to prevent the self-oscillating in experiment. First, the temperatures of the active region of the GaN HEMT device are measured by the infrared image method under different dissipation powers (including 2.8, 5.6, 8.4, 11.2, and 14 W) and different case temperatures, respectively. Then according to the result of infrared image method, the simulation model is set up by using the Sentaurus TCAD. From the final optimized model, we extract the device junction temperature and calculate the thermal resistance. It is expected to ascertain the characteristic of the thermal resistance and compare it with the result from the infrared image method. It is found that as the device case temperature increases from 80 ℃ to 130 ℃, the thermal resistance changes from 5.9 ℃/W to 6.8 ℃/W, i.e., it is increased by 15%. When the power increases from 2.8 W to 14 W, the thermal resistance changes from 5.3 ℃/W to 6.5 ℃/W, i.e., it is increased by 22%. This phenomenon is mainly attributed to the changes of the thermal conductivity of device materials. According to the formula for the coefficient of the thermal conductivity of nonmetallic material SiC, the phonon scattering rate becomes larger with the increase of temperature. Thus, the phonon mean free path can decrease by reducing the average freedom time. Finally, the coefficient of thermal conductivity becomes smaller. It was reported by Kotchetkov et al. (Kotchetkov D, Zou J, Balandin A A, Florescu D I 2001 Appl. Phys. Lett. 79 4316) that the coefficient of thermal conductivity of GaN becomes smaller under high temperature. All of these have an effect on the heat dissipation of the device, which will cause the thermal resistance to increase. Based on the result from the infrared image method and TCAD simulation, the changing characteristic of the thermal resistance is obtained, thereby reducing the errors in the calculation of the junction temperature.
Keywords:AlGaN/GaN high-speed electron mobility transistor  thermal resistance  infrared image method  Sentaurus TCAD simulation method
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号