首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Automated Generation of Microkinetics for Heterogeneously Catalyzed Reactions Considering Correlated Uncertainties**
Authors:Dr Bjarne Kreitz  Dr Patrick Lott  Prof?Dr Felix Studt  Prof?Dr Andrew J Medford  Prof?Dr Olaf Deutschmann  Prof?Dr C Franklin Goldsmith
Institution:1. School of Engineering, Brown University, 184 Hope Street, Providence, RI, 02912 USA;2. Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 20, 76128 Karlsruhe, Germany;3. School of Chemical and Biomolecular Engineering, Atlanta, GA, 30318 USA
Abstract:The study presents an ab-initio based framework for the automated construction of microkinetic mechanisms considering correlated uncertainties in all energetic parameters and estimation routines. 2000 unique microkinetic models were generated within the uncertainty space of the BEEF-vdW functional for the oxidation reactions of representative exhaust gas emissions from stoichiometric combustion engines over Pt(111) and compared to experiments through multiscale modeling. The ensemble of simulations stresses the importance of considering uncertainties. Within this set of first-principles-based models, it is possible to identify a microkinetic mechanism that agrees with experimental data. This mechanism can be traced back to a single exchange-correlation functional, and it suggests that Pt(111) could be the active site for the oxidation of light hydrocarbons. The study provides a universal framework for the automated construction of reaction mechanisms with correlated uncertainty quantification, enabling a DFT-constrained microkinetic model optimization for other heterogeneously catalyzed systems.
Keywords:Automated Mechanism Generation  Microkinetics  Oxidation  Reaction Mechanism  Uncertainty Quantification
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号