首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2169篇
  免费   28篇
  国内免费   197篇
化学   2006篇
晶体学   6篇
力学   6篇
数学   2篇
物理学   374篇
  2024年   2篇
  2023年   137篇
  2022年   27篇
  2021年   29篇
  2020年   52篇
  2019年   60篇
  2018年   54篇
  2017年   72篇
  2016年   31篇
  2015年   28篇
  2014年   104篇
  2013年   120篇
  2012年   104篇
  2011年   142篇
  2010年   102篇
  2009年   143篇
  2008年   149篇
  2007年   173篇
  2006年   180篇
  2005年   123篇
  2004年   136篇
  2003年   65篇
  2002年   39篇
  2001年   32篇
  2000年   36篇
  1999年   28篇
  1998年   36篇
  1997年   43篇
  1996年   29篇
  1995年   21篇
  1994年   16篇
  1993年   11篇
  1992年   12篇
  1991年   10篇
  1990年   11篇
  1989年   3篇
  1988年   8篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有2394条查询结果,搜索用时 15 毫秒
1.
The requirement of green and sustainable materials to prepare heterogeneous catalysts has intensified for practical reasons over the past few decades. Carbohydrates are possibly the most plentiful and renewable organic materials in nature with inimitable physiochemical properties, plausible low-cost and large-scale production, and sustainability features could be exploited in the generation of nanostructured heterogeneous catalysts. This review article outlines the organic transformations catalyzed by diverse carbohydrate-based nanostructured catalysts in greener and environmentally friendly processes. Selected examples are highlighted for a variety of organic reactions exploiting the proposed catalysts’ reactivity and reusability, and interactions with the intrinsic nature of the applied carbohydrate supports; advantages and speculated challenges of the introduced catalysts are deliberated as well.  相似文献   
2.
3.
The present study reports significant improvements in the removal of ammoniacal nitrogen from wastewater which is an important problem for many industries such as dyes and pigment, distilleries and fisheries. Pilot plant studies (capacity, 1 m3/h) on synthetic wastewater using 4-amino phenol as model nitrogen containing organic compound and two real industrial effluents of high ammoniacal nitrogen content were carried out using hydrodynamic cavitation. Two reactor geometries were evaluated for increased efficiency in removal-orifice and vortex diode. Effect of initial concentration (100–500 mg/L), effect of pressure drop (0.5–5 bar) and nature of cavitating device (linear and vortex flow for cavitation) were evaluated along with effect of salt content, effect of hydrogen peroxide addition and aeration. Initial concentration was found to have significant impact on the extent of removal: ~ 5 g/m3 removal for initial concentration of 100 mg/L and up to 12 g/m3 removal at high concentration of 500 mg/L. Interestingly, significant improvement of the order of magnitude (up to 8 times) in removal of ammoniacal nitrogen could be obtained by sparging air or oxygen in hydrodynamic cavitation and a very high removal of above 80% could be achieved. The removal of ammoniacal nitrogen by vortex diode was also found to be effective in the industrial wastewaters and results on two different effluent samples of distillery industry indicated up to 75% removal, though with longer time of treatment compared to that of synthetic wastewater. The developed methodology of hydrodynamic cavitation technology with aeration and vortex diode as a cavitating device was found to be highly effective for improving the efficiency of the conventional cavitation methods and hence can be highly useful in industrial wastewater treatment, specifically for the removal of ammoniacal nitrogen.  相似文献   
4.
Semiconductor photocatalysis as a desirable technology shows great potential in environmental remediation and renewable energy generation, but its efficiency is severely restricted by the rapid recombination of charge carriers in the bulk phase and on the surface of photocatalysts. Polarization has emerged as one of the most effective strategies for addressing the above‐mentioned issues, thus effectively promoting photocatalysis. This review summarizes the recent advances on improvements of photocatalytic activity by polarization‐promoted bulk and surface charge separation. Highlighted is the recent progress in charge separation advanced by different types of polarization, such as macroscopic polarization, piezoelectric polarization, ferroelectric polarization, and surface polarization, and the related mechanisms. Finally, the strategies and challenges for polarization enhancement to further enhance charge separation and photocatalysis are discussed.  相似文献   
5.
6.
《Comptes Rendus Chimie》2015,18(6):614-618
A simple, efficient, and ecofriendly procedure for the aerobic oxidation of alcohols to aldehydes and ketones in the presence of In(NO3)3/[C12mim][FeBr4] in aqueous media has been developed. The oxidation reactions afford the target products in good to high yields and no over-oxidation was observed. The products can be separated by a simple extraction with dichloromethane, and the system can be recycled and reused without loss of activity.  相似文献   
7.
8.
《中国化学快报》2020,31(12):2991-2992
The recent development of selective oxidation of aromatic sulfides with molecular oxygen was highlighted. The sulfoxides and sulfones could be obtained by simply switching the reaction media, i.e., bis(2-butoxyethyl)ether (BBE) or poly(ethylene glycol)dimethyl ether (PEGDME). The application of the high-boiling-point polyether as an initiator and green media can eliminate the need of large quantities of additives and volatile solvents. This strategy represents an economic and eco-friendly method that could find potential applications.  相似文献   
9.
Treatment of a meso‐diarylporphyrin with PhI(OAc)2 in the presence of BF3 ? OEt2 and propionic acid affords the corresponding porphyrinquinone in a high yield (91%). A novel quinone derived from mesomeso β–β doubly‐fused diporphyrin was obtained as the sole byproduct (16% yield), which exhibits strong panchromatic absorption between 300 and 1000 nm. It has a low HOMO‐LUMO gap owing to expanded and low‐symmetry π‐planes.  相似文献   
10.
The electro-oxidation of organic molecules at the anode with simultaneous generation of hydrogen at the cathode in electrosynthesis reactors is considered as a promising and efficient process for the co-production of hydrogen and bio-sourced value-added chemicals. In this study and for the first time, we investigated the electro-oxidation of glucose and methylglucoside in 0.1 mol L−1 NaOH on polycrystalline Pt (real surface area = 14.5 ± 0.5 cm2, roughness ≈ 5) in the potential range [0; +1.20 V vs. rhe] under silent and ultrasonic (bath, 45 kHz, Pacous = 11.20 W) conditions. A series of linear sweep voltammograms, chronoamperograms and high-performance liquid chronoamperograms were generated. It was found that higher current densities were obtained under ultrasonic conditions over the potential range of +0.25 V to +1.10 V vs. rhe, indicating that higher oxidation rates were provided under ultrasonication. It was observed that the desorption of species from the Pt surface in the medium potential region was favoured, allowing free catalytic Pt sites for further adsorption and oxidation of reactants; and in the high potential region, high peak current densities in the presence of ultrasound was due to enhanced mass transport of the electroactive species from the bulk electrolyte to the Pt-polycrystalline electrode surface. HPLC studies confirmed that higher electrochemical activity was obtained in the presence of ultrasound than in the absence. In our conditions, it was also found that low frequency ultrasound did not change the selectivity of the glucose and methylglucoside electro-oxidation reactions but instead, a significant increase in the rate of conversion was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号