首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis,structural and ellipsometric evaluation of oxygen-deficient and nearly stoichiometric zinc oxide and indium oxide nanowires/nanoparticles
Authors:Sodky Hamed Mohamed
Institution:1. Physics Department , College of Science, Qassim University , P.O. 6644, 5145, Buryadh, Kingdom of Saudi Arabia;2. Physics Department, Faculty of Science , Sohag University , 82524 Sohag, Egyptabo_95@yahoo.com
Abstract:Oxygen-deficient (OD) and nearly stoichiometric (NST) ZnO and In2O3 nanowires/nanoparticles were synthesized by chemical vapor deposition on Au-coated silicon substrates. The OD ZnO and OD In2O3 nanowires were synthesized at 750 and 950°C, respectively, using Ar flow at ambient pressure. A mixture of flowing Ar and O2 was used for synthesizing NST ZnO nanowires and NST In2O3 nanoparticles. Growth of OD ZnO nanowires and NST In2O3 nanoparticles was found to be via a vapor–solid (VS) mechanism and the growth of NST ZnO nanowires was via a vapor–liquid–solid mechanism (VLS). However, it was uncertain whether the growth of OD In2O3 nanowires was via a VS or VLS mechanism. The optical constants, thickness and surface roughness of the prepared nanostructured films were determined by spectroscopic ellipsometry measurements. A three-layered model was used to fit the calculated data to the experimental ellipsometric spectra. The refractive index of OD ZnO, NST ZnO nanowires and NST In2O3 nanoparticles films displayed normal dispersion behavior. The calculated optical band gap values for OD ZnO, NST ZnO, OD In2O3 nanowires and NST In2O3 nanoparticles films were 3.03, 3.55, 2.81 and 3.52?eV, respectively.
Keywords:ZnO  In2O3  nanowires  oxygen-deficient  ellipsometry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号