首页 | 本学科首页   官方微博 | 高级检索  
     

低秩矩阵优化若干新进展
引用本文:李鑫荣,修乃华,罗自炎. 低秩矩阵优化若干新进展[J]. 运筹学学报, 2020, 0(2): 23-41
作者姓名:李鑫荣  修乃华  罗自炎
作者单位:北京交通大学理学院
基金项目:国家自然科学基金(Nos.11971052,11771038)。
摘    要:
低秩矩阵优化是一类含有秩极小或秩约束的矩阵优化问题,在统计与机器学习、信号与图像处理、通信与量子计算、系统识别与控制、经济与金融等众多学科领域有着广泛应用,是当前最优化及其相关领域的一个重点研究方向.然而,低秩矩阵优化是一个NP-难的非凸非光滑优化问题,其研究成果并非十分丰富,亟待进一步深入研究.主要从理论和算法两个方面总结和评述若干新结果,同时列出相关的重要文献,奉献给读者.

关 键 词:矩阵优化  秩函数  低秩集  理论  算法

Some advances in low-rank matrix optimization
LI Xinrong,XIU Naihua,LUO Ziyan. Some advances in low-rank matrix optimization[J]. OR Transactions, 2020, 0(2): 23-41
Authors:LI Xinrong  XIU Naihua  LUO Ziyan
Affiliation:(School of Science,Beijing Jiaotong University,Beijing 100044,China)
Abstract:
Low-rank matrix optimization is a class of matrix optimization problems with rank minimization or rank constraint.With wide applications ranging from statistics and machine learning,signal and image processing,communication and quantum computing,system identification and control,to economics and finance,low-rank matrix optimization is currently a key research direction in optimization and related fields.However,due to the intrinsic non-convexity and discontinuity in the rank function,low-rank matrix optimization is generally NP-hard.Existing research results in this direction are not very rich,and further research is urgently needed.In this paper,we mainly summarize and review some latest research results on low-rank matrix optimization in theory and in algorithm,along with related important references,so as to dedicate to readers.
Keywords:matrix optimization  rank function  low-rank set  theory  algorithm
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号