首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Transition Metal Complexes with more than one Dihydrogen Ligand: Structure and Bonding of M(CO)6–x(H2)x (M = Cr,Mo, W; x = 1, 2, 3) [1]
Authors:Stefan Dapprich  Gernot Frenking
Abstract:Quantum mechanical ab initio calculations at the MP2 and CCSD(T) level of theory have been used to investigate the geometries and bond energies of the complexes M(CO)6–x(H2)x (M = Cr, Mo, W; x = 1, 2, 3). The theoretically predicted M(CO)5–(H2) bond dissociation energies are in excellent agreement with experimental values. The M–(H2) dissociation energies of the bis- and tris-dihydrogen complexes are very similar to the values for the mono-dihydrogen complexes. In M(CO)5(H2) the dihydrogen ligand prefers an eclipsed conformation relative to the equatorial carbonyl groups. For M(CO)4(H2)2 the cis and trans isomers are nearly equal in energy for M = W, while a cis configuration is favoured for M = Cr. For M(CO)3(H2)3 the facial configurations are more stable than the meridial structures for all three metals M. The charge decomposition analysis (CDA) classifies dihydrogen as a donor ligand with moderate acceptor properties. In trans-M(CO)4(H2)2 back donation is increased and the M–(H2) bonds are stronger than in M(CO)5–(H2). Back donation in M(CO)3(H2)3 is slightly weaker than in the mono-dihydrogen complexes M(CO)5(H2).
Keywords:Transition metal carbonyl dihydrogen complexes  chromium  molybdenum  tungsten  ab inito calculations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号